

RESEARCH INVENTION JOURNAL OF SCIENTIFIC AND EXPERIMENTAL SCIENCES 5(3):65-72, 2025

©RIJSES Publications

ONLINE ISSN: 1115-618X

PRINT ISSN: 1597-2917

https://doi.org/10.59298/RIJSES/2025/5316572

Page | 65

Investigating the Pharmacological Mechanisms of Antimalarial Plants

Asiimawe Masika Agnovia

Department of Clinical Medicine and Dentistry Kampala International University Uganda Email: agnovia.asiimawe@studwc.kiu.ac.ug

ABSTRACT

The global burden of malaria, especially from *Plasmodium falciparum*, underscores the urgent need for effective, affordable, and accessible treatments. Traditional medicinal plants have long served as a primary health resource in malaria-endemic regions, offering bioactive compounds with significant therapeutic potential. This study investigates the pharmacological mechanisms of antimalarial plants, emphasizing the isolation, characterization, and biological action of plant-derived compounds. Drawing upon both ethno botanical knowledge and modern pharmacological methodologies, it explores how these natural agents affect the parasite's lifecycle by targeting heme detoxification, protein kinases, mitochondrial electron transport, and biosynthetic pathways. Phytochemical analyses and in vitro/in vivo assays are reviewed to highlight their efficacy and safety profiles. Additionally, the paper discusses synergistic interactions with existing antimalarial drugs, isolation techniques, and the translational challenges from bench to bedside. By bridging traditional medicine and modern drug discovery, this research provides a foundation for the development of novel, plant-based antimalarial therapeutics with multi-target efficacy. **Keywords:** Antimalarial plants, *Plasmodium falciparum*, phytochemicals, heme detoxification, drug resistance, ethnopharmacology, bioassay-guided isolation.

INTRODUCTION

Malaria is a fever produced by the parasite's release of toxins into the blood. There are 4 types of parasite causing malaria including P. falciparum (PF), P. vivax (PV), P. malarie (PM), and P. ovale (PO). PF is the most serious one, which can fastly infect red blood cells and kill patients. Therefore, it is urgent to find effective and cheap anti-PF medicines. Plant extracts are a good resource for drug discovery. Medicinal plants had been widely used in rural areas for chronic diseases. Currently, the development of modern pharmacology provides opportunities to identify bioactive compounds from medicinal plants. In addition, there are further demands of cheaper medicines for malaria treatment, because existing medicines, especially artemisinin derivatives, are very expensive, causing a high burden to malaria-endemic areas. Plants as primary sources of new lead compounds since ancient times. Some significant drug discoveries from natural products include nicoumalone, vincristine, paclitaxel, and artemisinin. Several medicinal plants are also reported to have anti-malaria effects such as A. annua, Bird pepper, Gardenia fruit, and Bidens pilosa. Therefore, the exploration of more anti-malaria plants is expected to find new lead compounds. Medicinal plants with folklore reputation for the treatment of malaria are listed in the NAPRALERT database. The plants are transsected into 52 genera. Plasmodium falciparum (Pf) is the most deadly malaria parasite in humans. Pf strain 3D7 is widely used for antimalarial pharmacological activity evaluation. A fetal bovine serum (FBS) red blood cell (RBC) system was established to culture and proliferate 3D7. The average proliferation rate is about 4.2% per day. The IC50 of the reference drug chloroquine (CO) against the Pf strain 3D7 within 72 h was at 0.049 \(\mu M \), while the coefficient of variation (CV) was 10.36%. The results suggested that this approach could be a good platform for the screening of antimalarial medicinal plants [1, 2].

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Historical Context of Antimalarial Research

Malaria, prevalent in tropical and subtropical regions, causes approximately 27 million infections and over 619,000 deaths annually. Current treatments involve semi-synthetic or synthetic drugs, but emerging resistance of Plasmodium raises concerns about their long-term efficacy. This has led to investigating natural antimalarial products, as traditional societies have long utilized plant extracts to combat fevers. Consequently, the number of studies on plant-based malarial treatments has surged, particularly in journals focused on pharmacology and ethnomedicine. Research initially targeted nonalkaloidal, non-glycosidic plants using bioassay-guided methods, gradually shifting toward isolating active metabolites. However, many aspects of these plant remedies' bioactivity remain underexplored. Despite numerous reports on traditional plant usage for malaria, few have undergone thorough safety and efficacy testing. Clinical studies predominantly examine pure compounds with singular actions, while many medicinal plants contain diverse chemical mixtures that affect various biological targets. Additionally, effective natural compounds against malaria in livestock, insects, or humans often differ from those found in medicinal plants. Efforts to eliminate larvacidal plants may worsen transmission, and alternative botanical solutions, like fermented fruit as toxic bait, are seldom considered. Crude plant extracts frequently demonstrate greater effectiveness than isolated components against various organisms, with antimalarial activity in Plasmodium emerging from combined multi-target actions [3, 4].

Phytochemical Components of Antimalarial Plants

Antimalarial medicinal plants are crucial for ethnopharmacology, with numerous indigenous species exhibiting antimalarial properties. This work focuses on plants with confirmed in vivo effects, highlighting their potential as sources of bioactive compounds with unique mechanisms for drug discovery. These compounds are also significant for chemical ecology and understanding plant or insect diversification. Literature indicates that various known and novel antiplasmodial metabolites can be isolated from these plants, often serving as lead compounds for structure-activity relationship studies or synthetic biology applications. Tropical rainforest plants represent a largely untapped resource for developing antimalarial compounds with innovative mechanisms. Furthermore, many isolated metabolites are toxic to fungi, bacteria, or insects, suggesting potential uses as agrochemicals or bioherbicides. The antimalarial efficacy of plant extracts and metabolites was assessed using standard phenotypic assays, producing IC50 values against P. falciparum strains. Standardized plant extracts, prepared from harvested material, were effective in rodent malaria models. Active extracts underwent bioassay-guided screening for metabolite isolation, which was characterized with extensive 1D and 2D NMR data and mass spectrometry. New structures, verified through the Counter NMR Database, were synthesized from commercially available precursors. Metabolites, whether isolated or derived, showed activity against Plasmodium strains and were non-toxic at 10 µM. Understanding their chemical diversity could foster 'green chemistry' approaches in synthetic biology [5, 6].

Mechanisms of Action

30% of the anti-malarial drugs currently in use are plant-derived natural products, which target various biological pathways in the malaria parasite. Phytochemicals that are effective against P. falciparum have been reported to target heme detoxification, inhibition of calcium-dependent protein kinases, inhibition of macromolecule biosynthesis, and inhibition of mitochondrial electron transport chain complex. Antimalarial compounds from plants have been shown to kill the parasite during both the intraerythrocytic lifecycle and gametocyte lifecycle: Andrographolide, beta-lapachone, lagunatip, loganin, proanthocyanidins, rubusoside, and sanshools have been shown to kill intraerythrocytic parasites, while apomorphine, quassinoids, resveratrol, and triphala have been reported to kill gametocytes. Although the detailed molecular mechanisms and targets of some plant-derived anti-malarial drug candidates have been investigated, little information is available regarding their pharmacological mechanisms of action. A comprehensive and systematic analysis of their molecular mechanisms and targets is thus urgently needed and highly beneficial for their future clinical development. In the current study, the pharmacological mechanisms and targets of the 36 most potent plant-derived anti-malarial compounds are carefully analysed in detail, by collaborating with various research teams and they are systematically categorized based on their biological targets within the malaria parasite. To elicit their pharmacological mechanisms and targets, a detailed description of virulent P. falciparum strain selection and culture, construction and experiments of the P. falciparum mutant strains, cytotoxicity evaluation on mammalian cell lines, and anti-malarial bioassays are provided. The details on cell-free enzyme activity assays are also provided to discover the interaction between small molecules and their targets. The experimental methodologies to

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

evaluate anti-malarial resistance and cross-resistance and to detect the drug-induced heme uptake and clearance in P. falciparum-infected red blood cells are also provided. Lastly, a brief description of the instrument and software settings used for data acquisition and analysis in mass spectrometry is provided [7, 8].

Isolation and Characterization Techniques

Both active plant ingredients and pharmaceutical products should be characterized. Under strict conditions, the isolated substances must be converted into pharmaceutical products, provided that they have an active effect. Because they can influence the bioavailability of the active pharmaceutical component (APhC) and/or its release, both active plant ingredients and pharmaceutical products must be characterized non-biologically. Initially, the qualitative composition must be determined by widely available, nondestructive methods such as UV and IR spectroscopy, and mass spectrometry (MS). The quantitative composition can then be determined by utilizing the chemometric methods for multivariate detection. For quantitative structural analysis, chromatographic methods like HPLC and GC may be used, which have a wider range. To uniquely determine the chemical and spatial structure of substances, it is necessary to have a connection to biological activity testing. For this, additional complementary nonbiological methods such as X-ray crystallography, NMR, and fluorescence microscopic imaging can be used. Together, these methods allow the determination of the overall structure of the APhC and its distribution in living organisms. There should be a clear distinction between what must be isolated in terms of extraction and what is most likely to be responsible for the activity according to the mode of action. Extraction does not give characterizations in themselves. Hence compartmental and hydrophilic extracts can be fractionated with success at the level of characterization without isolation. Extraction is often carried in ethyl acetate, which helps retention due to the medium itself. It should be noted that prodrugs or conjugated compounds often give fallacious results. Consequently, non-destructive methods such as NMR and IR should be used wherever possible. For botanical APhC characterization, considerations like the highest effective concentration of constituents, pharmacological safety, and physicochemical properties of the plants should be taken into account [9, 10].

In Vitro Studies of Antimalarial Activity

In vitro studies on antimalarial activity have highlighted the threat of resistant strains of Plasmodium falciparum, prompting the search for new agents with distinct modes of action. A promising category includes aryl-α-acid amines, evaluated through syntheses and anti-Plasmodium assays that assessed their in vitro inhibition and toxicity using Vero cells. Dose-response analyses of 19 synthesized derivatives indicated all had anti-plasmodial activity with moderate to good selectivity ratios. Activity was influenced by specific moieties ortho to the amino group and the saturation of the aliphatic linker with monosubstituted compounds showing the strongest potency. High-throughput assays using SYBR green I, a DNA-binding fluorophore, validated detection of cytotoxicity and facilitated the screening of six Plasmodium protoberberine alkaloids based on concentration-response relationships. High-resolution mass spectrometry of four compounds supported the feasibility of an active endocycle product, suggesting that oxidatively activated compounds may represent a novel antimalarial category. Comprehensive assays evaluated SAF04634 and dihydroartemisinin, demonstrating their robustness and specificity compared to traditional methods. This cohesive set of assays promises to discover new antimalarials from diverse compound libraries, further assessing bioavailability, structure-activity relationships, and efficacy in vivo. The examination of a small library of imidazoquinoxaline derivatives provided insights into pharmacophores for inhibiting P. falciparum growth and glucose-6-phosphate dehydrogenase inhibition. The imidazoquinoxaline ring emerged as a novel quinoxaline bioisostere based on its structural complementarity, suggesting the potential for discovering reliable, validated models applicable in broader drug discovery contexts [11, 12].

In Vivo Studies and Animal Models

Oral chronic and prophylactic models have been performed on C57BL/6 mice infected with 106 P. berghei NK65 blood forms, with extracts from plants administered orally at 100–250 mg/kg/day for 4 days and analyzed on day 4 post-infection. All doses of chromatography fractions from leaves of Pterodon pubescens showed statistically significant effect on parasitemia suppression, causing up to 87.6% suppression when compared to vehicle controls [13–15]. Levels of parasitemia and animal survival rates were not significantly different between treated and control groups. According to in vivo results combined with the literature, methanol extracts from leaves of Hyptis martiusii were selected for bioguided fractionation towards McIA poising. Infection of 106 P. falciparum W2 was induced in NOD/SCID mice, which were treated with orally-gavage with the selected fractions of Hyptis martiusii.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Treatments on days 2-3 post-infection were dosed at 31.25-500 mg/kg, while treatments on days 4-6 post-infection were dosed at 62.5-500 mg/kg. Parasitemia levels of Fractions 3-6 inhibited P. falciparum growth with IC50 values of 188, 479, 192, and 246 µg/mL, respectively [16-19]. Fraction 2 showed activity against P. falciparum with IC50 932 µg/mL. A total of 48% constriction was observed for blood vessels containing GFP+ leukocytes in chain-formation, and an overall 75% of blood vessels inflamed on treatment with fractions from Hyptis martiusii. All fractions were well tolerated and did not induce either mortality or weight gain-loss in NOD/SCID mice. Major technical improvements have been made in preclinical development of antimalarial drugs. Improved rodent models that better replicate human malaria and more comprehensive pharmacometric modeling are now available for research groups across academia and industry. The older standard mouse model only allowed testing of a limited range of candidates. Details of the infection, drug exposure, and parasitological sampling protocols differ significantly between the human model and the murine model. Despite lack of further refinement, models based on the Plasmodium berghei parasite remain widely used in laboratories around the world. However, the rodent and human infectious stages of the parasite differ greatly in physiology and drug exposure, limiting ability to reliably translate results from preclinical assessments to clinical trials [20-24].

Ethno botanical Perspectives

Ethnobotanical museums and herbaria (molecular plant biology research facilities) worldwide house vast collections of plant specimens gathered by scientists. They comprise the most comprehensive and bestdocumented plant collection with their latitudinal and longitudinal coordinates recorded. Botanical research facilities gather plant collections for research, and academic papers based on such collections in the form of samples are available in pdfs. Whether herbarium specimens are used as surrogates or whether chemical extracts and/or animal testing data are published is the main challenge. Internet databases of these plant collections including literature references and digitized images of specimens are being searched [25-28]. The goal is to investigate the number and chemical identity of secondary metabolites by literature studies and/or chemical analyses. These plants are then evaluated for antimalarial activity, beginning with an initial self-limiting screen on chloroquine-resistant Strain W2 of Plasmodium falciparum. Extracts that show activity above a threshold will be subjected to a 48 h megascreen against four laboratory strains of the parasite [29-33]. Those derived from novel taxa will be pursued more intensively, and standards will be sought to confirm results. The flow of specimens, literature materials, chemical extracts, and biologically active secondary metabolites is shown. Ethnopharmacological plants' knowledge often fails to be validated scientifically, and ethnobotanical observations or hypotheses are poorly documented, preventing follow-up research. However, custodians of the folk knowledge could provide researchers with guidance and/or medicinal plant collections. Many species' hawkish activity is not documented in studies; they highlight a difficulty in using this natural knowledge. Data on medicinal plant knowledge transmission and indigenous synthesis of new medicines from available local resources now exist. With the modern push towards conservation, ethnobotanical research could provide a role in the conservation of the indigenous flora and fauna of the regions examined [34-37].

Safety and Toxicology of Antimalarial Plants

The safety of plant-derived medicines for human use is critical alongside their pharmacological efficacy. Toxicity issues often stem from secondary metabolites that protect against insect predation and are relevant for traditional remedies. A 12-hour acute toxicity test was performed using a 5 g/kg extract on mice from the Jirenji, Bole, and Ambo districts of Ethiopia. Mice were monitored for 14 days to assess the impact of the plant extracts on their health, focusing on behavioral changes, body weight, nerve activity, excretion, grooming, and mortality [38-40]. Analyses included hematological and biochemical profiles along with tissue histopathology of vital organs. On the first day, no toxicity-related behaviors were observed for traditionally used plants. Behavioral changes such as cannibalism, reduced locomotion, and excessive grooming emerged by the third day in extracts from fruit and seed-based preparations. Notably, mice given Combretum molle and Vernonia amygdalina exhibited significant weight loss (p < 0.05). A significant reduction in spleen weight was also observed for several groups (p < 0.05). No deaths occurred during the study. Comparatively significant changes, such as hypergammaglobulinemia and hypocholesterolemia, were seen. Increased bilirubinemia was noted in specific extract groups, and a rise in the WBC profile was marked in C. molle. While the effects varied with dosage, they remained within acceptable medical limits. It is recommended that these plants be specially evaluated for safety, despite lower pharmacological ratings. Continued research should focus on the active phytochemicals to improve

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

effectiveness, conducting integrated analyses to understand mechanisms for potential drug development $\lceil 41-43 \rceil$.

Synergistic Effects with Conventional Antimalarial

Despite advances in malaria control, it remains a global health challenge. In 2019, there were an estimated 229 million cases in 87 countries, leading to approximately 409,000 deaths, particularly high in the WHO African Region. Worldwide, 267 million children were at risk, and 896,000 severe cases were reported. Malaria treatment typically involves compounds, either natural or synthetic derivatives. Antimalarials derived from plants include quinine and artemisinin derivatives, but drug resistance poses a significant issue, threatening to increase global morbidity and mortality from malaria. Traditional folkloric medicine has long utilized various plants for treating malaria, and many possible drug leads come from this tradition. It's crucial to thoroughly isolate and characterize active agents for their pharmacokinetics and medical formulations. Plants produce phytochemicals for defense, forming the basis of traditional medicine. Herbal medicine is rich in antimalarial activity sourced from plants. This project investigates the antimalarial effects of several traditional medicine plants, considering differences in climate, flora, and cultures compared to Africa [19, 20].

Regulatory Considerations for Antimalarial Plants

Regulatory considerations are essential for a better safety assessment and drug development of antimalarial plants. Basically, the international organizations as well as national authorities have initiated several schemes, programs and routine exercises with the co-operation of researchers, and scientists of different countries regarding assessment of safety evaluation of traditional herbal medicines, medicinal plants and natural products. These include. In addition to those, some regulatory bodies in different countries have been imposing new requirements on behalf of scientific research communities and industrial manufacturers for the better safety assessment of herbal medicines. Natural products, specially the medicines derived from plants, are regarded as safe. But from recent past, the safety assessment and toxicological evaluation of herbal medicines have received increased attention from regulatory bodies and scientific communities. Anti-malaria antimalarial plants are also, therefore, likely to come under barrage of scrutiny regarding the safety of their consumption. Most old herbal formulations of antimalarial plants are available in different Asian countries, particularly in India and Thailand, in market for chronic use against malaria. These plants have been tested for anti-malaria properties, but little attention has been paid on their toxicological assessments. Therefore, it is an urgent need for safety assessment of the drugs derived from the medicinal plants used as antimalarial by traditional healers in different countries [21, 22].

Future Directions in Antimalarial Research

Widespread resistance to antimalarial drugs by Plasmodium falciparum urges the need for new agents with diverse mechanisms of action, particularly from plant-derived compounds. This review summarizes various plant species and their extracts known for antimalarial properties, highlighting promising compounds. Additionally, advancements in standardized bioassays for assessing antimalarial efficacy are discussed. Isolated constituents from sideranthine plants undergo preliminary pharmacological testing. The report introduces new compound classes and emphasizes the importance of regulatory guidelines for investigating herbal substances in treating malaria. It underscores the need for the pharmaceutical sector to recognize unique public sector approaches to discovering plant-based leads. While nontraditional tropical areas may present challenges for discovering leads, increasing interest in the chemistry and biological effects of local medicinal plants can bridge the gap between traditional knowledge and pharmacological advances. Future endeavors should focus on developing synthetic antimalarials through country-based bioassays, utilizing mass spectrometry to inform proposed actions and integrating recent methodologies [23, 24].

Case Studies of Prominent Antimalarial Plants

Rainforest populations in malaria-endemic Amazonian areas, particularly in Brazil, have a history of using plant remedies for malaria treatment. Malaria transmission in these regions is influenced by various ecological, demographic, and socio-cultural factors. Recently, the Brazilian Amazon has faced significant changes due to economic and medicinal activities, attracting over a million residents, including farmers and gold prospectors, seeking opportunities. This gold exploitation has led to demographic growth but has adversely affected local cultures and sustainable living practices. Additionally, widespread deforestation driven by economic motives has transformed this unique area into one of the most alarming environmental zones globally. Traditionally, local groups have relied on accumulated knowledge of medicinal plants to treat diseases, resulting in high levels of knowledge about local flora. However,

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

studies on the use and pharmacological effects of these plants are limited. Efforts are underway in Brazil to screen plants for anti-malarial properties, as local communities have historically relied on flora for malaria treatment. Researchers suspect that Brazilian plants may contain potent extracts with anti-malarial activity and have begun screening them accordingly [25, 26].

CONCLUSION

Medicinal plants present a promising frontier in the search for novel antimalarial agents, particularly in the face of growing resistance to existing drugs. This investigation highlights that plant-derived compounds exhibit diverse mechanisms of action, often with multi-target potential, making them suitable candidates for drug development. Through advanced in vitro and in vivo studies, as well as rigorous chemical and pharmacological characterization, several plant extracts and isolated phytochemicals have shown significant efficacy against *Plasmodium* strains, including chloroquine-resistant variants. While safety and standardization remain key challenges, especially in translating ethnobotanical knowledge into clinical applications, the integration of traditional medicine with modern pharmacological approaches can yield innovative therapies. Future work should emphasize mechanistic studies, high-throughput screening, and synergy with existing treatments to optimize plant-based interventions in malaria control and eradication efforts.

REFERENCES

- 1. Sato S. Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology. Journal of physiological anthropology. 2021 Jan 7;40(1):1.
- 2. Ward KE, Fidock DA, Bridgford JL. Plasmodium falciparum resistance to artemisinin-based combination therapies. Current opinion in microbiology. 2022 Oct 1;69:102193.
- 3. Pan WH, Xu XY, Shi N, Tsang SW, Zhang HJ. Antimalarial activity of plant metabolites. International Journal of Molecular Sciences. 2018 May 6;19(5):1382.
- 4. Aracil A, Green J. Plants with antimalarial properties: a systematic review of the current clinical evidence. European Journal of Integrative Medicine. 2019 Jun 1;28:76-85.
- 5. Okokon JE, Mobley R, Edem UA, Bassey AI, Fadayomi I, Drijfhout F, Horrocks P, Li WW. In vitro and in vivo antimalarial activity and chemical profiling of sugarcane leaves. Scientific reports. 2022 Jun 17;12(1):10250. nature.com
- 6. Wahyuni DK, Wacharasindhu S, Bankeeree W, Wahyuningsih SP, Ekasari W, Purnobasuki H, Punnapayak H, Prasongsuk S. In vitro and in vivo antiplasmodial activities of leaf extracts from Sonchus arvensis L. BMC Complementary Medicine and Therapies. 2023 Feb 14;23(1):47. springer.com
- 7. Shaha C. Plant-derived products as anti-leishmanials which target mitochondria: a review. Expert Reviews in Molecular Medicine. 2025 Mar 26:1-39.
- 8. Erhirhie EO, Ikegbune C, Okeke AI, Onwuzuligbo CC, Madubuogwu NU, Chukwudulue UM, Okonkwo OB. Antimalarial herbal drugs: A review of their interactions with conventional antimalarial drugs. Clinical Phytoscience. 2021 Jan 3;7(1):4. springer.com
- 9. Gao E, Wang W, Huang Y, Luo Z, Chen B, Xiao S, Li D. Puerariae lobatae Radix: Progress in extraction, separation methods and pharmacological activities research. Separations. 2024 Jun 24;11(7):195.
- 10. Chyau CC, Chiu CY, Hsieh HL, Hsieh DW, Hsieh CR, Chang CH, Peng RY. High-purity preparation of enzyme transformed trans-crocetin reclaimed from gardenia fruit waste. Plants. 2022 Jan 21;11(3):281. mdpi.com
- 11. Duffey M, Blasco B, Burrows JN, Wells TN, Fidock DA, Leroy D. Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends in parasitology. 2021 Aug 1;37(8):709-21. cell.com
- 12. Ward KE, Fidock DA, Bridgford JL. Plasmodium falciparum resistance to artemisinin-based combination therapies. Current opinion in microbiology. 2022 Oct 1;69:102193.
- 13. Bankole AE, Adekunle AA, Sowemimo AA, Umebese CE, Abiodun O, Gbotosho GO. Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria. Parasitology Research. 2016 Jan;115(1):299-305.
- 14. Salm A, Krishnan SR, Collu M, Danton O, Hamburger M, Leonti M, Almanza G, Gertsch J. Phylobioactive hotspots in plant resources used to treat Chagas disease. Iscience. 2021 Apr 23;24(4). cell.com
- 15. IJINU TP, MOHANDAS N, SALONI A, PUSHPANGADAN P. SCIENTIFIC VALIDATION OF TRADITIONAL KNOWLEDGE: DEVELOPMENT OF HERBAL DRUGS AND

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

- EXPLORATION OF LEADS FOR MODERN DRUG DISCOVERY. Traditional Medicines in Drug Discovery and Development. 2024 Jul 18:10. [HTML]
- 16. Otimenyin SO. Ethnobotanical survey: the foundation to evidence-based validation of medicinal plants. InEvidence based validation of traditional medicines: a comprehensive approach 2021 Jan 19 (pp. 441-466). Singapore: Springer Singapore. researchgate.net
- 17. Okorie NH, Ali IJ, Ugodi GW, Ikeh GO, Okonkwo LE, Umegbo NL. IN VIVO ANTI-INFLAMMATORY ACTIVITY OF COMBRETUM BUCHIENSE LEAF METHANOL EXTRACT IN RATS (PAW OEDEMA MODELS). FUDMA JOURNAL OF SCIENCES. 2025 Jul 23;9(7):315-9.
- 18. Nyagumbo E, Nyirenda T, Mawere C, Mutaramutswa A, Ngorima G, Kapanga DT, Nhari L, Matsheza M, Midzi C, Pote W, Maunganidze F. An Overview of Medicinal Plant Species Used in Treating and Managing Diarrhea by Zimbabwean Traditional Healers: A Toxicological Assessment. Medicinal Plants-Harnessing the Healing Power of Plants. 2024 Oct 8.
- 19. Su Q, Krai P, Goetz M, Cassera MB, Kingston DG. Antiplasmodial isoflavanes and pterocarpans from Apoplanesia paniculata. Planta medica. 2015 Aug;81(12/13):1128-32.
- Arora S, Behl T, Mehndiratta S. Plant-Derived Anti-Malarial Compounds and Their Derivatives as Anticancer Agents: Future Perspectives. InMetastatic Diseases 2021 Nov 17 (pp. 179-196). Apple Academic Press.
- 21. Jităreanu A, Trifan A, Vieriu M, Caba IC, Mârțu I, Agoroaei L. Current trends in toxicity assessment of herbal medicines: A narrative review. Processes. 2022 Dec 28;11(1):83. mdpi.com
- 22. Wang H, Chen Y, Wang L, Liu Q, Yang S, Wang C. Advancing herbal medicine: enhancing product quality and safety through robust quality control practices. Frontiers in pharmacology. 2023 Sep 25;14:1265178. frontiersin.org
- 23. Plowe CV. Malaria chemoprevention and drug resistance: a review of the literature and policy implications. Malaria Journal. 2022 Mar 24;21(1):104.
- 24. Verma R. Antimalarial Drugs and Drug Resistance. InDrug Targets for Plasmodium Falciparum: Historic to Future Perspectives 2024 Jun 19 (pp. 41-55). Singapore: Springer Nature Singapore. THTML
- 25. Lima RB, Rocha e Silva LF, Melo MR, Costa JS, Picanço NS, Lima ES, Vasconcellos MC, Boleti AP, Santos JM, Amorim RC, Chaves FC. In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon. Malaria journal. 2015 Dec 18;14(1):508.
- 26. Chaniad P, Phuwajaroanpong A, Techarang T, Viriyavejakul P, Chukaew A, Punsawad C. Antiplasmodial activity and cytotoxicity of plant extracts from the Asteraceae and Rubiaceae families. Heliyon. 2022 Jan 1;8(1).
- 27. Orji OU, Ibiam UA, Aja PM, Ugwu P, Uraku AJ, Aloke C, Obasi OD, Nwali BU. Evaluation of the phytochemical and nutritional profiles of Cnidoscolus aconitifolius leaf collected in Abakaliki South East Nigeria. World J Med Sci. 2016;13(3):213-217.
- 28. Enechi OC, Okpe CC, Ibe GN, Omeje KO, Ugwu Okechukwu PC. Effect of Buchholzia coriacea methanol extract on haematological indices and liver function parameters in *Plasmodium berghei*-infected mice. Glob Veterinaria. 2016;16(1):57-66.
- 29. Alum EU, Uti DE, Ugwu Okechukwu PC, Alum BN. Toward a cure—Advancing HIV/AIDS treatment modalities beyond antiretroviral therapy: A review. Med. 2024;103(27):e38768.
- 30. Obeagu EI, Bot YS, Obeagu GU, Alum EU, Ugwu Okechukwu PC. Anaemia and risk factors in lactating mothers: A concern in Africa. Int J Innov Appl Res. 2024;11(2):15-17.
- 31. Alum EU, Ibiam UA, Ugwuja EI, Aja PM, Igwenyi IO, Offor CE, Orji UO, Ezeani NN, Ugwu OP, Aloke C, Egwu CO. Antioxidant effect of Buchholzia coriacea ethanol leaf extract and fractions on Freund's adjuvant-induced arthritis in albino rats: A comparative study. 2022;59(1):31-45.
- 32. Offor CE, Ugwu Okechukwu PC, Alum EU. Determination of ascorbic acid contents of fruits and vegetables. Int J Pharm Med Sci. 2015;5:1-3..
- 33. Amusa MO, Adepoju AO, Ugwu Okechukwu PC, Alum EU, Obeagu EI, Okon MB, Aja PM, Samson AOS. Effect of ethanol leaf extract of *Chromolaena odorata* on lipid profile of streptozotocin-induced diabetic Wistar albino rats. IAA J Biol Sci. 2024;10(1):109-117.
- 34. Enechi YS, Ugwu OC, Ugwu Okechukwu PC, Omeh K. Evaluation of the antinutrient levels of *Ceiba pentandra* leaves. IJRRPAS. 2013;3(3):394-400.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

https://rijournals.com/scientific-and-experimental-sciences/

- Ugwu Okechukwu PC, Nwodo OFC, Joshua EP, Odo CE, Ossai EC. Effect of ethanol leaf extract of *Moringa oleifera* on lipid profile of malaria-infected mice. Res J Pharm Biol Chem Sci. 2014;4(1):1324-1332.
- 36. Ugwu OPC, Alum EU, Uhama KC. Dual burden of diabetes mellitus and malaria: Exploring the role of phytochemicals and vitamins in disease management. Res Inven J Res Med Sci. 2024;3(2):38-49.
- 37. Alum EU, Ugwu Okechukwu PC, Aja PM, Obeagu EI, Inya JE, Onyeije AP, Agu E, Awuchi CG. Restorative effects of ethanolic leaf extract of *Datura stramonium* against methotrexate-induced hematological impairments. Cogent Food Agric. 2013;9(1):2258774.
- 38. Offor CE, Nwankwegu FC, Joshua EP, Ugwu Okechukwu PC. Acute toxicity investigation and anti-diarrhoeal effect of the chloroform-methanol extract of the leaves of *Persea americana*. Iran J Pharm Res. 2014;13(2):651-658. PMID: 25237361; PMCID: PMC4157041.
- 39. Afiukwa CA, Oko AO, Afiukwa JN, Ugwu Okechukwu PC, Ali FU, Ossai EC. Proximate and mineral element compositions of five edible wild grown mushroom species in Abakaliki, southeast Nigeria. Res J Pharm Biol Chem Sci. 2013;4:1056-1064.
- 40. Ugwu OP, Alum EU, Ugwu JN, Eze VH, Ugwu CN, Ogenyi FC, Okon MB. Harnessing technology for infectious disease response in conflict zones: Challenges, innovations, and policy implications. Med. 2024;103(28):e38834.
- 41. Obeagu EI, Ugwu OPC, Alum EU. Poor glycaemic control among diabetic patients; A review on associated factors. Newport Int J Res Med Sci (NIJRMS). 2023;3(1):30-33.
- 42. Nwaka AC, Ikechi-Agba MC, Okechukwu PU, Igwenyi IO, Agbafor KN, Orji OU, Ezugwu AL. The effects of ethanol extracts of *Jatropha curcas* on some hematological parameters of chloroform intoxicated rats. Am-Eur J Sci Res. 2015;10(1):45-49.
- 43. Ezeani NN, Ibiam UA, Orji OU, Igwenyi IO, Aloke C, Alum E, Aja PM, Ugwu OP. Effects of aqueous and ethanol root extracts of *Olax subscopioidea* on inflammatory parameters in complete Freund's adjuvant-collagen type II induced arthritic albino rats. Pharmacogn J. 2019;11(1)

CITE AS: Asiimawe Masika Agnovia (2025). Investigating the Pharmacological Mechanisms of Antimalarial Plants. Research invention journal of scientific and experimental sciences 5(3):65-72. https://doi.org/10.59298/RIJSES/2025/5316572