

RESEARCH INVENTION JOURNAL OF SCIENTIFIC AND EXPERIMENTAL SCIENCES 5(2):135-145, 2025

©RIJSES Publications

ONLINE ISSN: 1115-618X

PRINT ISSN: 1597-2917

https://doi.org/10.59298/RIJSES/2025/52135145

Page | 135

Socio-Clinical Innovation: Integrating Telemedicine and Biosimilar Biologics for RA Management in Africa

Ezeani N. N.

Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria Corresponding Author: nk.ezeani@yahoo.com

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease that significantly impacts quality of life, yet access to timely diagnosis and effective treatment remains limited in Africa. This paper explores the role of socio-clinical innovation specifically telemedicine and biosimilar biologics in transforming RA care across the continent. Telemedicine offers scalable solutions to address barriers of geography, workforce shortages, and delayed referrals, while biosimilar biologics provide cost-effective alternatives to conventional biologic therapies, expanding access to advanced treatments. By integrating these innovations within patient-centered models of care, health systems can improve treatment adherence, enhance early detection, and foster continuity of care. The analysis draws on epidemiological data, pathophysiological insights, and case studies to illustrate how telerheumatology platforms and biosimilar adoption can jointly strengthen healthcare delivery. Challenges including digital infrastructure gaps, regulatory frameworks, clinician training, and socioeconomic inequities are critically examined, alongside ethical considerations such as informed consent, data security, and equitable access. Stakeholder perspectives from patients and clinicians to policymakers and pharmaceutical companies highlight the necessity of cross-sector collaboration. Ultimately, the convergence of telemedicine and biosimilars offers Africa a unique opportunity to "leapfrog" systemic barriers and develop a resilient, equitable framework for chronic disease management. This socio-clinical innovation not only improves outcomes for individuals living with RA but also contributes to broader health system strengthening and sustainable development across the continent.

Keywords: Rheumatoid arthritis; telemedicine; biosimilars; socio-clinical innovation; digital health; patient-centered care; and healthcare access.

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by symmetrical, destructive arthritis, affecting peripheral joints and causing permanent disability [1]. Globally, RA affects 0.5-1% of the population, with incidence and prevalence rising due to an ageing population. At least 1 in 10 adults worldwide has some form of arthritis. RA treatment typically begins with methotrexate, followed by biologics for refractory patients; highquality synovial biopsy can help optimize drug development [2]. Existing biologic treatments face limitations such as high cost, administration mode, immunogenicity, and adverse events [3]. Telemedicine—defined as the use of electronic communication and information technologies to provide clinical services at a distance—enhances healthcare quality and efficiency for chronic conditions and remote geographical areas by reducing patient and caregiver inconvenience, misinformation, misdiagnosis, and delayed treatment. Nevertheless, challenges remain in deployment, clinical support, training, infrastructure, equipment, software, and data analysis. Biosimilar biologics—agents highly similar to their originator biologics but produced through emerging manufacturing techniques—offer a safer, cost-effective alternative to novel biologics, potentially reducing RA burden in Africa. Regulatory frameworks specific to Africa aim to ensure the quality, safety, and efficacy of biosimilars and encourage their uptake. Integrating telemedicine and biosimilars as socio-clinical innovation responds by delivering quality care, medicines, training, and implementation packages. Innovative technology approaches such as screen-to-screen consultations, mobile apps, and teleconferencing reduce burdens and improve patient adherence [1, 2, 3]. Socioeconomic status profoundly influences treatment timeliness, affordability, and medication

adherence. Improving understanding among healthcare professionals and patients fosters personalized patient-centered care. Context-sensitive policy development and equitable access to sociotechnical system innovation promote accessibility, affordability, and acceptability of RA treatment in Africa. Socio-clinical innovation is an effective network of multidisciplinary perspectives for addressing complex socio-technical healthcare issues.

Background on Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic, progressive autoimmune condition characterized by synovial joint inflammation, ultimately leading to the destruction of articular and periarticular bone and cartilage [4]. Epidemiological data estimate RA prevalence in the African population at approximately 0.36%. Beyond musculoskeletal complications, RA also increases susceptibility to cardiovascular disease, primarily due to accelerated atherosclerosis stemming from systemic inflammation. Treatment strategies for RA encompass both pharmacologic and non-pharmacologic modalities with the objective of halting inflammation, preventing structural damage, and preserving functional capacity. Pharmacologic interventions include nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs), biologic DMARDs (bDMARDs), and targeted synthetic DMARDs, while non-pharmacological approaches cover exercise therapy, psychosocial measures, patient education, self-management programmes, and orthoses. The management of RA in the African context is often challenged by limited health infrastructure and resources, underscoring the need for innovative approaches that facilitate access to contemporary diagnostics and therapeutics [3, 4].

Epidemiology of RA in Africa

A comprehensive review of rheumatic diseases in Africa reveals consistent features including a young age at onset, low prevalence of subcutaneous nodules and extra-articular manifestations, and milder radiographic changes, while some regional studies indicate a higher frequency of subcutaneous nodules [5]. Most studies find the prevalence of RA to be higher in women than in men, with a ratio of nearly 6:1. In the absence of specialist rheumatology services, untreated active disease is maintained over many years, leading to higher disease activity, functional impairment, and joint damage. Clinical features vary across the continent: subcutaneous nodules affect up to 30% of patients in Senegal, Algeria, and Kenya, yet only 3% in the DR Congo and Nigeria. Rheumatoid factor titres also vary, with prevalence as low as 22–26% in the DR Congo and Nigeria, and as high as 80% in South Africa, Senegal, Algeria, and Kenya. Radiographic studies initially suggested that erosions were uncommon but more recent imaging reports demonstrate erosions in nearly 50% of patients. Disease activity is generally moderate to high and remission is rarely achieved. Methotrexate is the most widely used disease-modifying anti-rheumatic drug, often combined with hydroxychloroquine or chloroquine. Biological DMARDs are largely unavailable in public hospitals and remain the preserve of patients with private medical insurance. Many patients present with erosive arthritis and widening functional limitations, indicative of late diagnosis, underscoring the need for improved awareness and training to promote early diagnosis and better treatment outcomes [4, 5].

Pathophysiology of RA

During the initiation phase of RA, binding of a triggering antigen induces cleavage of proteoglycans and formation of an inflammatory exudate in the synovium. This leads to stimulation of the innate immune response and self-antigen presentation by dendritic cells [7]. In the amplification phase, increased production of cytokines causes attractant activity and proliferative changes in synovial cells. The chronic inflammatory phase is characterized by generation of proinflammatory and regulatory T cells and accumulation in the synovium. Proliferative synovial cells produce proinflammatory cytokines that attract and activate monocytes and macrophages, which then secrete matrix metalloproteinases (MMPs) and cathepsins to degrade cartilage and cause bone erosion [6]. In RA, inflammation is sustained in the joint partly through the interplay between tumour necrosis factor (TNF)-α, IL-6, transforming growth factor-β, and IL-10 in the synovial fluid, tissue, and serum. Pro-inflammatory mediators induce cartilage damage by stimulating the release of other mediators that regulate metalloproteinase (MMP) activity and chondrocyte death. Autocrine and paracrine mechanisms induce cartilage catabolism through suppression of constitutive inhibitors such as plasminogen activator inhibitor-1 and tissue inhibitors of MMPs (TIMP). Finally, as inflammation becomes more chronic, cytokines activate cellular immune response and synovial fibroblasts to promote pannus formation and perpetuate cartilage and bone destruction. This pathological pattern occurs in most patients with established RA [7].

Current Treatment Modalities

Treatment of RA aims to suppress inflammation, manage pain, and limit structural damage. Therapeutic strategies include non-drug methods such as physical and occupational therapy, surgery, lifestyle modifications, and dietary supplements, as well as various drug therapies. Nonsteroidal anti-inflammatory drugs effectively reduce pain and inflammation but do not prevent joint destruction. Glucocorticoids possess anti-inflammatory and immunosuppressive properties; short-term use is effective for controlling disease activity and pain, whereas long-term administration raises the risk of adverse events. Conventional disease-modifying antirheumatic drugs

(DMARDs), including methotrexate (MTX), are employed to alter disease course and prevent joint damage; leflunomide may be reserved for severe cases [1, 2,]. In recent decades, biologic DMARDs targeting proinflammatory cytokines and immune cells have demonstrated superior efficacy compared with conventional DMARDs, enabling many patients to attain good disease control or remission. When MTX is beneficial and tolerated, it is generally combined with biologics; nevertheless, 30% of patients receive biologic monotherapy owing to MTX intolerance 8. Biologic monotherapy is likely to expand in the coming years, reinforcing the need for innovative approaches to therapeutic delivery. Furthermore, RA is prevalent in Africa, where access to healthcare services is limited and socioeconomic conditions constrain treatment adherence [7].

Page | 137

Telemedicine in Healthcare

Telemedicine is the use of telecommunication and information technologies to provide clinical healthcare services to persons living at a distance from the healthcare provider. Telehealth is a broader term that encompasses any interaction between a patient and a healthcare practitioner using information and communication technologies (ICTs) [9]. With advancements in technology, telemedicine has been increasingly pursued as a means of delivering healthcare. Telemedicine applications in clinical practice are abundant; overcoming physician shortages in rural areas, providing care out of (normal) hours, saving patients travel to the healthcare facility, facilitating services such as appointment scheduling, reminders and prescription renewals offer many advantages. Rheumatic diseases are often managed in tertiary centers due to the lack of specialists and specialized centres in developing countries. As patients who travel long distances have difficulty securing referrals and travelling frequently, telemedicine can help ensure better access to health care. Patients with rheumatic diseases are eager to use ehealth technologies to better understand their chronic conditions and they particularly appreciate personalized care that adapts to the evolution of their disease [4]. Regular monitoring of rheumatoid arthritis patients improves outcomes. Physical activity patterns captured by actimeters during the weeks preceding disease flares allow the prediction of an upcoming flare with high sensitivity and specificity. Patients and caregivers are satisfied by telemedicine both from an economic and an information point of view, reporting no loss of information compared to traditional consultations. In chronic pathologies such as cardiac and diabetic patients, telemedicine shows results similar to conventional medicine. Tele-monitoring of rheumatoid arthritis has demonstrated comparable disease control. Telemedicine improves quality of life and reduces costs. In medical terms, it provides reassurance through alerts and information, especially during infections. Outside of strict medical issues, telemedicine offers continuous support, therapeutic education and peer support. Rheumatoid arthritis also causes joint and muscle stiffness leading to impaired mobility and hence reduced physical activity. As human movement is key to good health, immobility can quickly cause co-morbidity and morbidity [1,2, 3]. Telemedicine transforms disease monitoring because actimeters, objective physical activity biomarkers of rheumatoid arthritis long-term clinical progression, can be recorded in a patient's natural environment. These actimeters therefore have the potential to make treatment adjustments according to daily-life activity and disease progression between clinical visits.

Definition and Scope

Socio-clinical innovation denotes the multidisciplinary process by which novel technologies are conceived, designed, delivered and disseminated within public health settings. Socio-clinical innovation integrates biomedical and pharmaceutical knowledge and experimental medicine and clinical trials, together with technological development and clinical delivery. The integration of telemedicine and biosimilar biologics offers a promising approach to improving the management of rheumatoid arthritis (RA) a chronic, systemic autoimmune disease characterized by sustained synovitis, systemic inflammation and autoantibody production in African healthcare settings. Telemedicine delivers clinical services remotely through information and communication technology, enabling the diagnosis, treatment and monitoring of patients by healthcare professionals [10]. It can therefore help to overcome the challenges of limited healthcare access and poor treatment adherence for patients with RA in Africa, who often live in remote areas and encounter long journeys to clinical facilities [2]. Biosimilar biologics are new versions of already-approved biologic medicines that have equivalent quality, safety and efficacy, and offer competitive advantages in terms of cost, availability and accessibility. African regulatory authorities have therefore introduced a distinct framework for the licencing and approval of biosimilars to support the affordability and accessibility of biologic treatments.

Benefits of Telemedicine

Telemedicine offers numerous benefits for individuals with chronic conditions such as rheumatoid arthritis (RA). It mitigates physician shortages, particularly in rural areas, and enables specialists to provide care outside designated hours. Patients avoid travel and enjoy simplified appointment scheduling and prescription renewals. Individuals with rheumatic diseases express strong enthusiasm for e-health as it enhances disease understanding and personalization, permitting selection of desired outcomes and adaptable symptom monitoring throughout disease evolution 9. Ongoing RA monitoring is pivotal for improved outcomes; patient physical activity patterns forecast flares with 95% accuracy. Tele-consultations with patients and caregivers yield high satisfaction and no loss of

information when compared with traditional visits [2]. Telemedicine yields results on par with conventional care in chronic cardiac and diabetic diseases, and rheumatological tele-monitoring achieves comparable disease control. Outcomes conferences involving Italian patient associations report enhanced quality of life and reduced costs alongside reassurance from timely alerts. Continuous support, therapeutic education, and peer networks remain accessible. Persistent physical data measurement, such as activity levels, supplies objective daily biomarker tracking, thereby assisting clinicians in treatment optimization [10].

Challenges in Implementation

Telemedicine has emerged as a promising approach to overcoming health system challenges and improving access to healthcare, especially in Africa [11]. By utilizing telecommunications technology, telemedicine facilitates symptom assessment, diagnosis, prescription, follow-up care, and the provision of medication, thereby bridging gaps between patients and healthcare providers; this potential remains notable for RA management given the existing barriers to evidence-based treatment. As an example of socio-clinical innovation, the integration of telemedicine and biosimilar biologics offers a multidisciplinary method for addressing the clinical issue of RA from a systems-level perspective. Despite its appeal, several obstacles may hinder the implementation of telemedicine and biosimilars in the region. Among these concerns, connectivity problems and digital barriers are commonly cited, often due to deficiencies in infrastructure and limited reliable internet coverage [12]. Such constraints are especially problematic when telemedicine services require videoconferencing or wireless applications, which are often unavailable in rural or underdeveloped areas. Another frequently noted challenge is the cost of digital devices, which may exclude portions of the population from accessing telemedicine platforms. The scarcity of digital literacy further complicates telemedicine adoption, resulting in difficulties navigating online services and affecting overall user confidence [13]. In addition to technical limitations, healthcare providers often express concern regarding workload and insufficient training, leaving them ill-prepared to incorporate telemedicine initiatives into pre-existing clinical routines. These reservations, combined with uncertainty about long-term telemedicine reimbursement, detract from enthusiasm and impede uptake among service users. Patient preferences also indicate a general favoring of face-to-face interactions, although this tendency might be less pronounced for individuals managing chronic illnesses. A lack of trust in the quality of remotely delivered care constitutes an additional deterrent to patient uptake of telemedicine services in African contexts, one linked to experiences with earlier forms of technology such as the telephone [11, 12]. Finally, when considered alongside biosimilar biologics, the absence of clear regulatory control environments remains a primary barrier to widespread implementation of telemedicine interventions in the region.

Biosimilar Biologics

Biosimilar biologics are medical products that closely resemble already approved 'reference' or 'originator' biologic drugs, exhibiting highly similar quality, efficacy and safety characteristics despite minor differences in raw materials and manufacturing processes [14, 15]. Unlike generic drugs, which are chemically synthesized and identical at the molecular level, biosimilars are produced by living cells and cannot be exact replicas. Hence, extensive characterization assays and comparative clinical assessment are required. Biosimilars may contribute to cost savings by increasing market competition. The growing population of rheumatoid arthritis (RA) patients in Africa creates a pressing need for affordable therapies; yet biologics remain largely unavailable or financially out of reach on the continent. Some African regulators have aligned with the stringent requirements set by the European Medicines Agency, World Health Organization or U.S. Food and Drug Administration, but challenges persist regarding appropriate regulatory frameworks. Considerations include the need for regional guidelines that address clinical trials and post-marketing surveillance, the importance of extrapolation of indications approved in the reference product, local production capacity and associated costs, and intellectual property rights. Several analysis packages compare the cost-effectiveness of originator biologics with biosimilar options; however, the manufacturing uncertainties and price discount levels of emerging biosimilars expand the range of potential outcomes [14]. Despite this, biosimilar biologics remain central to the potential reconstruction of a chronic disease management system for RA patients at Africa's secondary and tertiary hospitals [15].

Understanding Biosimilars

Biosimilars are biotherapeutic products that mirror licensed biologics in quality, biological activity, safety, and efficacy. They represent an evolution in the development of biologics, offering an alternative to patent-protected originator mAbs [14]. The introduction of biosimilars has the potential to improve patient access to effective biologic treatments, reduce long-term care costs for chronic diseases, and mobilize healthcare budgets throughout Europe [15]. Rheumatologists are likely to be at the forefront of the use of biosimilar mAbs, both in terms of recommendations and the design and analysis of randomized controlled trials. Additionally, the emergence of biosimilars provides new insights into the immunogenicity of biologics, suggesting a potential for broader antibody testing in clinical practice.

Regulatory Framework in Africa

Although different African countries have national regulatory authorities for medicines, they are considered weak in one way or another, often lacking human and financial resources as well as expertise and managerial capacity [16]. As a result, there is considerable delay in registration, particularly of new products such as anti-cancer medicines, and of medicines needed for treatment of chronic non-communicable diseases (including cardiovascular diseases, diabetes and cancer). Continued development of regulatory capacity is crucial as the continent's growing disease burden demands access to novel investigational medicines not yet registered in countries [17].

Cost-Effectiveness of Biosimilars

The introduction of biosimilar anti-tumour necrosis factor (TNF)- α agents in routine clinical care has generated much physician and patient interest and led to the commencement of prospective trials and development of guidelines to improve patient confidence and care [14]. The potential cost-effectiveness of biosimilars is a crucial component of this interest. Biosimilars present an opportunity to improve patient access to effective biologic treatments, thereby enhancing individual patient experience and contributing to a reduction in long-term care costs for chronic diseases [15]. Concurrently, cost analyses of switching to rituximab biosimilar highlight a budget impact that varies by country, with implications for rheumatology and oncology management in regions such as the Middle East and North Africa [18].

Integration of Telemedicine and Biosimilars

Integration of telemedicine with biosimilar biologics presents a privileged opportunity to tailor patient care and reduce associated societal costs. The COVID-19 pandemic has highlighted telemedicine's importance for monitoring chronic or disabling diseases, especially in rural communities. Furthermore, tele-rheumatology can improve care and access to biologic therapies, which remain prohibitively expensive for many African patients in continental settings [15]. Integrating biosimilar biologics, which have an identical mechanism of action and comparable clinical efficacy to hurteventives, identifies and nurtures the most secure diagnostics and therapeutics currently available [14]. A study of telemedicine adoption for rheumatoid arthritis monitoring in Africa offers an opportunity to define the pivotal elements of telemedicine deployment and construction.

Models of Integration

Models of integration that combine telemedicine and biosimilar biologics hold considerable promise for informing the development of how telemedicine services can deliver biologic disease-modifying antirheumatic drugs to patients with rheumatoid arthritis in Africa [2]. The approaches typically draw from a growing body of experimental research, a small number of which have provided further insights into specific strategies, from both the supply and demand side, that could inform service design. The resulting models offer alternatives for the organization of telemedical healthcare delivery and for the sustainable structuring of the wider stakeholder ecosystem. Success depends on combining suitable clinical and technological paradigms with business and organizational models that accommodate cost and convenience alongside other priorities. An example of such an integrated, continuous patient-centred healthcare model is one that combines the advantages of telemedical care with the use of biosimilar biologics, to deliver benefits to patients within an effective and sustainable system [12]. Cases conducted within different African settings provide valuable examples, from which generic, scalable frameworks of integration can be distilled and adapted to the particulars of the healthcare context or the constraints of the technology available [2].

Case Studies from Africa

The TELEMED-CAM Study evaluated an intervention package comprising telecare to improve care outcomes for hypertension in rural Cameroon, thereby addressing the extreme shortage of health workforce in Sub-Saharan Africa [19]. Without indigenous capacity in innovation such as R&D infrastructure, trained personnel, or firms, sustainable absorption of foreign technologies is difficult [20]. Efforts to build policy commitment and mobilize resources towards African health innovation include the NEPAD Consolidated Science and Technology Action Plan, the African Network for Drugs and Diagnostics Innovation, and a series of empirical case and institutional studies on science-based health innovation.

Patient-Centric Approaches

Interest in patient-centric RA management is growing, motivated by multidisciplinary assessment of patient outcomes [21] and expectations of biologic, targeted-synthetic and conventionally synthetic DMARDs [22]. Linking telemedicine and biosimilar biologics offers a patient-centric socio-clinical innovation for RA management in Africa. Tanzania's iPANDA collects patient information and data on regional TB and HIV exposure, for rheumatologists to evaluate biopsychosocial parameters and inform treatment decisions. Telemedicine platforms enable RA follow-up with rheumatology nurses or the automated algorithms, which coordinate with primary healthcare services. Patients at risk of flares or disease progression can be quickly assessed and treatment adjusted. With the iPANDA and similar systems, self-monitoring and remote surveillance support medication adherence, and can pave the way to decentralizing outpatient clinics. The value propositions of integrated telemedicine and

biosimilar biologics are a patient-centred and affordable service enabling scalable noncommunicable disease management. In Kenya, where RA patients report high out-of-pocket medication spending, stabilising patients on biosimilars clears the way for a low-cost telemedicine service to support routine follow-up and improve treatment compliance. Tanzania collects RA patient data that could drive further refinement of the iPANDA or a bespoke telemedicine system. Integration should consider the patient as a user, with engagement tailored to patient behaviour and preferences. When considering integration models, future application could also expand to supporting rheumatologists with biosimilar prioritisation and situational guidance who assess individual patients from both a medical and socio-economic perspective. Combining telemedicine and biosimilar biologics can bring multidisciplinary socio-clinical innovation to the forefront of healthcare [21, 22].

Page | 140

Socioeconomic Factors

Socioeconomic factors profoundly influence access to healthcare, medication adherence, and patient-reported outcomes. Economic status affects treatment initiation and ongoing management; the ability to afford disease-modifying antirheumatic drugs (DMARDs) is a key predictor of medication adherence. Fluctuating income reduces the likelihood of continuous medication use [2]. Poor adherence undermines treatment efficacy and contributes to adverse patient-reported outcomes. Access to health care, rheumatologists, and diagnostic facilities also depends on patients' socioeconomic resources [23]. Among African countries, South Africa has the highest density of rheumatologists, while Kenya and Nigeria have fewer, tending to cluster in the most populated regions. Many patients live in peripheral or rural regions distant from specialist centres, where the cost both direct and indirect of travelling for diagnosis and follow-up exerts further pressures on adherence.

Access to Healthcare in Africa

Provision of healthcare is challenging across many African countries. Healthcare services are concentrated in urban and semi-urban areas because most qualified specialists are located in urban centers. Hospitals, clinics, and medical equipment also tend to be situated in cities [24]. Rural and other remote places have limited access to healthcare, and patients who live there often have to travel long distances, which is expensive and inconvenient. Furthermore, about half of the population in these countries lives under the poverty line, making healthcare services unattainable for many individuals. In urban and semi-urban areas, while healthcare facilities are reasonably available, the cost of services renders them out of reach for a significant portion of the population [24].

Impact of Socioeconomic Status on RA Management

Numerous socioeconomic factors influence rheumatoid arthritis (RA) management outcomes [25]. Globally, patients of lower socioeconomic status tend to cope poorly on various health-related domains. Caregivers of individuals with lower socioeconomic status also experience higher burdens [22].

Stakeholder Perspectives

Perspectives on telemedicine utilization in RA management derive from healthcare providers, patients and caregivers, and policy drivers. Caregiver and healthcare professional knowledge assures higher success rates, while a lack of user-centred content design may diminish patient experience and treatment adherence. Provider hesitation may also stem from changes in information flow imparted by telemedicine [22]. Policy decisions further influence telemedicine uptake by adjusting privacy regulation and reimbursement criteria. Insights were drawn from published literature and original policy analysis. Publications selected from key databases encompassed both quantitative and qualitative study methodologies: a bibliometric analysis portrayed telecommunications research trends, a quantification of mHealth services mapped user expectations, while narrative inquiry examined urban disparities [24]. Policy understanding consisted of an evaluation of local health-system capabilities and of telemedicine-oriented frameworks formulated by public and private institutions. In sub-Saharan African settings, several integration models linked cost-effective telemedicine delivery with affordable biosimilar administration. Such spatially distributed services can mitigate barriers stemming from limited RA management activities in urban referral centres [257].

Healthcare Providers

Healthcare professionals play a critical role in delivering health services to individuals, families, and communities. Their participation is essential in providing satisfactory care to patients. The shortages of healthcare workers in sub-Saharan Africa significantly limit the opportunities and ability of healthcare professionals in the region to provide adequate care. Telehealth has the potential to connect medical experts and healthcare workers in real-time to provide timely support and advice to patients [19].

Patients and Caregivers

Telemedicine can expand patients' and caregivers' access to a physician when seeking clarification about dose modification, established adverse effects, comorbidities, or any medication that is taken or planned to be taken concurrently with biosimilar biologics [22]. Patients and caregivers are also beneficiaries in lowering viral transmission risks by monitoring disease activity through telemedicine during the ongoing COVID-19 pandemic. Biosimilar biologics promote drug adherence among African RA patients by making it easier to start or continue

treatment, thereby reducing disease exacerbations. The lower cost of biosimilar biologics, in combination with telemedicine, can enable access to treatment with biologic agents in remote African regions and decrease the frequency of in-person visits to healthcare professionals. For these reasons, patients find the integration of biosimilar biologics and telemedicine generally feasible, acceptable, and desirable [20, 25].

Policy Makers

Minimizing the burden of rheumatic and musculoskeletal diseases and other chronic diseases in Africa requires equitable access to the medicines needed to treat these illnesses [15]. The use of biosimilar biologics combined with telemedicine delivery has the potential to improve access without compromising treatment outcomes simultaneously addressing both the social and the clinical aspects of disease management. Telemedicine follows health-related service and information delivery via electronic communication technologies, which may be particularly suited for the delivery of biosimilar biologics in Africa where access to healthcare facilities can be challenging. Biological disease-modifying antirheumatic drugs (bDMARDs) are extremely expensive and not widely available across Africa, largely because of the costs associated with these innovative treatments. Biosimilars biological agents developed to be highly similar in quality; safety and efficacy to a licensed reference medicine provide a substantially more cost-effective alternative suitable for administration and delivery via telemedicine [2]. Policymakers can play an important role in the socio-clinical innovation process through guidance and regulatory assistance, combined with oversight that monitors for responsible and ethical practice. By introducing regulatory frameworks that allow telemedicine to 'leapfrog' traditional infrastructure difficulties, policymakers can foster a low-cost approach to controlled access for chronic diseases such as rheumatoid arthritis (RA). Similarly, well-structured marketing authorisations can actively facilitate the roll-out of high-quality biosimilars throughout the continent, making them available to regions prone to long-life and support networks. By adopting a socioclinical perspective that integrates telemedicine with emerging modes of treatment, such as biosimilar biologics, policymakers can generate a sustainable model for the effective management of RA and assist Africa in building local capability around the widespread use of biosimilars in other non-communicable diseases of increasing local prevalence [15, 26].

Technological Innovations

Ongoing technological advances further strengthen the socio-clinical approach for RA management in Africa. Mobile and wireless technologies allow the provisioning and signing of prescriptions by text message or email, enabling patients to obtain medication from a local pharmacy. Mobile applications that allow patient—doctor engagement are already available, devices for remote monitoring have been proposed, and research into new tools for disease management continues [9].

Mobile Health Applications

Mobile health (m-health) applications are software programs running on mobile devices that help deliver healthrelated services [27]. In Africa, m-health services support medication compliance, health promotion, disease prevention, awareness raising, health monitoring, disease surveillance, communication, data collection, mobile telemedicine, point of care and decision support, and emergency medical response. Most also have the ability to work without Internet connectivity and utilize simple text messaging (SMS) instead. M-health initiatives enable health workers, especially those in remote areas, to discuss healthcare problems and link geographically separate teams through applications such as WhatsApp and Listserv. The mobile phone penetration rate in Africa is relatively high, and in some regions, > 75 % of the population lives within range of the signal from a mobile phone base station. SMS messaging increasingly supports patient management through appointment reminders, educating patients on self-management of chronic conditions, encouragement of medication adherence, and transmission of test results. Some challenges to note include high rates of phone loss due to theft and privacy concerns, which may negatively affect patient retention and sustained benefit. Mobile apps can support cancer survivors and enable local/regional virtual tumour boards to discuss treatment plans, particularly where healthcare resources are limited. Platforms such as NIH/NCI Project ECHO and International Cancer Expert Corps, together with collaborations fostered by organisations such as AORTIC, facilitate virtual case discussions and knowledge sharing among healthcare professionals, strengthening patient-centred care and enabling the development of robust clinical trial frameworks [27].

Remote Monitoring Technologies

Remote monitoring technologies can facilitate earlier medical intervention at more convenient times, potentially improving both treatment outcomes and patient well-being. The technological landscape supporting innovation continues to evolve rapidly and includes mobile technologies capable of integrating symptom monitoring and educational features. The choice of platform should align with the specific needs and capabilities of the target population, especially in low-resource environments [28]. In the African context, several remote symptom-monitoring systems employ a mobile-phone interface that transmits data to a web-based clinician platform; the pace of technology introduction has been rapid and the adoption of connected devices in the healthcare sector is expanding. Nevertheless, certain cautionary principles apply to the design of such systems. They ought to collect

and report exclusively information that can be actively utilized. Pertinent design questions comprise: How frequently should data be gathered? Which datasets are critical? And by what means can the setup prioritize alerts pertaining to the most significant clinical outcomes? Furthermore, the frequency and volume of incoming alerts must remain manageable to preserve the system's effectiveness especially when medical staff are tasked with overseeing numerous patients. Additional technologies also hold promise for extending palliative-care functionality in Sub-Saharan Africa (SSA) [28]. Wearable trackers can augment remote-monitoring capabilities through continual and passive data collection, thereby supporting clinician decision making particularly during the terminal palliative phase. Devices of this type have been associated with improvements in physical activity, quality of life, and fatigue; acceptance in African settings has generally been positive, although the full potential of wearables remains largely unexplored. However, their requirements for internet access and smartphones constitute barriers in a region dominated by basic mobile-phone usage. A complementary option resides in conversational-AI chatbots: these services have demonstrated utility for patient-reported outcome capture, patient education, and psychological support. Unresolved challenges include limited broadband coverage and the development of adequate support for local languages and dialects [9].

Ethical Considerations

The implementation of telemedicine and biosimilar biologics as socio-clinical innovation to improve the management of rheumatoid arthritis (RA) raises concerns regarding ethics, informed consent, and equality of access. Four factors are key. First, patients require extensive information about the socio-clinical research and its risks and benefits so that they can give fully informed consent. In some sectors of African society, the challenges of access to telemedicine and biosimilars are accentuated by inequality and a low level of education about RA [22]. In the initial stages, informed consent is therefore both complex and critical. Inviting research participants to develop the tools with which they express their fully informed consent is an important and ongoing aspect of socio-clinical innovation. Second, the equitable use of telemedicine and biosimilar biologics both calls for and implements responsible collaboration among patients and healthcare and industry professionals [22]. Socio-clinical innovation demonstrates commitment to the transparent and rigorous working together of wide cross-sections of the community in the process of technological innovation. Equitable access to telemedicine and biosimilars strengthens patients' ability to control an unpredictable disease. Third, access to healthcare is a socio-economic factor of the first order for RA. Many policy initiatives have used socio-economic arguments to develop Africa's healthcare infrastructure [29]. Telemedicine and biosimilars offer radical possibilities for informing that development. The arguments presented integrate with and complement current policy initiatives on the role of industry, the coordination of interventions, and the establishment of sustainable partnerships; respect for national drug policy; national procurement and supply; cooperation and partnerships; and implementation across sectors and borders. In taking account of these considerations, socio-clinical innovation aligns with the ethical guidance of [30]. Sociocultural, economic, and political context interact with the scientific and methodological aspects of the research agenda, translation, and implementation. Decisions about how and with whom to work, which tools to use, and which questions will shape the development and deployment of telemedicine and biosimilars probe colocated technical, ethical, and political issues. Cross references are therefore made to Socioeconomic Factors and to Integration of Telemedicine and Biosimilars.

Informed Consent in Telemedicine

Informed consent for clinical trials conducted in sub-Saharan Africa (SSA) frequently falls short of international standards [31]. The traditional process, entailing trained personnel meeting participants face-to-face is particularly challenging during busy clinic schedules or when recruiting at remote locations [32]. An innovative telemedicine approach, teleconsent, was developed at the Medical University of South Carolina to address these barriers. Teleconsent enables virtual meetings with prospective participants over video, facilitates collaborative real-time completion of consent documents, and generates electronically signed forms available for immediate download or print. The feasibility and ethics of teleconsent are being evaluated across institutions, with a focus on access at remote and underserved sites, comprehension of consent information, system usability, and impacts on research workflows. By reducing travel and regulatory burdens and streamlining enrollment, teleconsent holds promise for enhancing informed consent processes and accelerating clinical research [31, 32].

Equity in Access to Treatment

Equity in accessible rheumatoid arthritis (RA) treatment remains a global challenge, particularly in African nations where a disproportionate burden of inflammatory disease imposes excessive socioeconomic costs [2]. Access in low- and middle-income countries (LMICs) often confines patients to advanced, conventional disease-modifying agents, while those in high-income countries may access biologics that enhance clinical outcomes. Socio-clinical innovation bridging medical sciences with social technologies enables the formulation of optimal frameworks integrating cutting-edge medications with distributed telemedicine for management and follow-up. By addressing healthcare access and socioeconomic determinants in African contexts, the alignment of biosimilar biologics with telemedicine promotes equitable access to RA care [2].

Future Directions

Socio-clinical innovation representing the multidisciplinary use of telemedicine together with biosimilar biological drugs as an innovative way to further improve access and management of rheumatoid arthritis (RA) in Africa. Fostering socio-clinical innovation requires the development of suitable technology infrastructure with relevant trained personnel and a conducive legal framework. In addition, socio-clinical innovation insists on the recognition of respective patients and society concerns by ensuring ethics and equity of access across social classes [33]. Research should focus on optimizing telemedicine systems for rheumatology, particularly in terms of economic feasibility, in both rural and urban settings [33]. Assessment of patient and stakeholder acceptance of telemedicine is imperative, with ongoing pilot studies considering future connectivities and data protection measures. Equitability of telemedicine access across social classes is a critical concern. Furthermore, integrated telemedicine-biosimilar biologics systems require a sufficient number of trained healthcare practitioners and a robust regulatory environment [15]. Socio-clinical innovation is best served by two complementary strategies: ensuring equitable access even in remote areas through stepwise infrastructure development and associated training, followed by the gradual validation of interconnected telemedicine-biosimilar delivery systems in selected pilot countries [33].

Research Opportunities

Socio-clinical innovation is a multidisciplinary approach essential for addressing emerging healthcare challenges, such as the management of rheumatoid arthritis (RA) in Africa. RA, a chronic autoimmune disease causing joint inflammation and damage, presents major epidemiological, clinical, and socioeconomic challenges, particularly among African populations. Disease-modifying antirheumatic drugs offer the best prospect of controlling RA progression, while telemedicine enables remote monitoring and care. The arrival of biosimilar biologics, in particular, intensifies the need for socio-clinical innovation to integrate telemedicine and facilitate RA management systematically. Research opportunities focus on elucidating and promoting the synergies between telemedicine and biosimilar biologics to foster an efficient, sustainable, and patient-centred approach now imperative in Africa [15, 33].

Policy Recommendations

Given the steps undertaken by African nations to address rheumatoid arthritis (RA), and the specific challenges of frequent patient visits required to receive biosimilar biologics, policymakers and healthcare stakeholders should formally endorse the integration of telemedicine with biosimilar administration. Socio-clinical innovation, reflected in the merged operation of biosimilar biologics and telemedicine, offers one effective approach for treating RA [34]. Policy frameworks that institutionalize this integrative model can harness telemedicine's capacity to facilitate remote healthcare delivery, thereby reducing travel burdens and enhancing treatment adherence \(\frac{7}{34}, \) 357. This alignment, consistent with African healthcare strategies, prioritizes the treatment needs of RA patients while stimulating other initiatives aimed at diminishing socio-economic disparities in healthcare access. Telemedicine enables more frequent monitoring by clinicians, while access to affordable biosimilar alternatives augments service delivery by ensuring sustainable and effective provision of medically necessary therapies. Both telemedicine and biosimilars have already been employed successfully in Africa, exemplified by the Botswana telemedicine clinical practice guidelines and the extensive use of the biosimilar CT-P13 across numerous countries [19, 22]. Confronting and overcoming constraints imposes an urgent research agenda on socio-clinical innovation, compelling arrays of sector-specific inquiries into the dynamic operation of telemedicine, its effects on patient adherence, and the mechanisms through which biosimilars' comparative affordability mediates material transformation. Sustained treatment for chronic diseases like RA increasingly relies upon telemedicine, despite unresolved complexities related to effective delivery and data management. Regional policy frameworks, promoted in concert with healthcare organizations, must incorporate socio-clinical principles, to secure the broadest pragmatic benefits associated with telemedicine's co-deployment with affordable biosimilar options [35].

CONCLUSION

The integration of telemedicine and biosimilar biologics offers a groundbreaking socio-clinical innovation for rheumatoid arthritis (RA) management in Africa. Telemedicine reduces barriers to care by overcoming geographical, infrastructural, and workforce constraints, while biosimilar biologics expand access to advanced therapies by lowering treatment costs. When combined, these approaches create a patient-centered, scalable model that enhances early detection, treatment adherence, and continuity of care. However, their success depends on deliberate investments in digital infrastructure, clinician training, patient education, and robust regulatory systems that ensure quality, safety, and equity. Ethical considerations such as data privacy, informed consent, and equitable access must also guide implementation to build trust and safeguard patients' rights. By aligning technology, pharmaceutical innovation, and inclusive health policies, Africa has the potential to leapfrog systemic barriers and establish sustainable models for managing RA and other chronic diseases. Ultimately, telemedicine and biosimilars represent more than therapeutic tools; they embody a transformative pathway toward resilient healthcare systems, improved quality of life for patients, and long-term socio-economic development across the continent.

REFERENCES

- 1. Claire Van Hout M, Bachmann M, V. Lazarus J, Henry Shayo E et al. Strengthening integration of chronic care in Africa: protocol for the qualitative process evaluation of integrated HIV, diabetes and hypertension care in a cluster randomised controlled trial in Tanzania and Uganda. 2022. [PDF]
- 2. De Villiers K. Bridging the health inequality gap: an examination of South Africa's social innovation in health landscape. 2021. ncbi.nlm.nih.gov
- 3. Van Hout MC, Bachmann M, V Lazarus J, Henry Shayo E et al. Strengthening integration of chronic care in Africa: protocol for the qualitative process evaluation of integrated HIV, diabetes and hypertension care in a cluster randomised controlled trial in Tanzania and Uganda. 2020. ncbi.nlm.nih.gov
- 4. Kumar K, R Raizada S, D Mallen C, J Stack R. UK–South Asian patients' experiences of and satisfaction toward receiving information about biologics in rheumatoid arthritis. 2018. ncbi.nlm.nih.gov
- 5. Adelowo O, M. Mody G, Tikly M, Oyoo O et al. Rheumatic diseases in Africa. 2021. ncbi.nlm.nih.gov
- 6. Sandhu G, K. Thelma B. New Druggable Targets for Rheumatoid Arthritis Based on Insights From Synovial Biology. 2022. <u>ncbi.nlm.nih.gov</u>
- 7. Kukar M, Petryna O, Efthimiou P. Biological targets in the treatment of rheumatoid arthritis: a comprehensive review of current and in-development biological disease modifying anti-rheumatic drugs. 2009. ncbi.nlm.nih.gov
- 8. Detert J, Klaus P. Biologic monotherapy in the treatment of rheumatoid arthritis. 2015. ncbi.nlm.nih.gov
- 9. Song Y, Bernard L, Jorgensen C, Dusfour G et al. The Challenges of Telemedicine in Rheumatology. 2021. ncbi.nlm.nih.gov
- 10. Matovu B, Takuwa M, Norman Mpaata C, Denison F et al. Review of investigational medical devices' clinical trials and regulations in Africa as a benchmark for new innovations. 2022. ncbi.nlm.nih.gov
- 11. Ngassa Piotie P, Wood P, M. Webb E, F.M. Hugo J et al. Designing an integrated, nurse-driven and home-based digital intervention to improve insulin management in under-resourced settings. 2021. ncbi.nlm.nih.gov
- 12. Haroon Mahomed O, Asmall S. Development and implementation of an integrated chronic disease model in South Africa: lessons in the management of change through improving the quality of clinical practice. 2015. ncbi.nlm.nih.gov
- 13. Ngassa Piotie P, Filmalter C, G. Mohlala M, Zulu N et al. Factors affecting the implementation of a complex health intervention to improve insulin management in primary care: A SWOT analysis. 2022. ncbi.nlm.nih.gov
- 14. Dörner T, Strand V, Cornes P, Gonçalves J et al. The changing landscape of biosimilars in rheumatology. 2016. ncbi.nlm.nih.gov
- 15. Uhlig T, L. Goll G. Reviewing the evidence for biosimilars: key insights, lessons learned and future horizons. 2017. ncbi.nlm.nih.gov
- 16. Narsai K, Williams A, Kaija Mantel-Teeuwisse A. Impact of regulatory requirements on medicine registration in African countries perceptions and experiences of pharmaceutical companies in South Africa. 2012. ncbi.nlm.nih.gov
- 17. Solarin O, I. Mohammed Š, Ndlovu N, Vanderpuye V et al. Partnerships and Collaborations: The Right Alliances for Clinical Trials in Africa. 2020. ncbi.nlm.nih.gov
- 18. Almaaytah A. Budget Impact Analysis of Switching to Rituximab's Biosimilar in Rheumatology and Cancer in 13 Countries Within the Middle East and North Africa. 2020. ncbi.nlm.nih.gov
- 19. Kingue S, Angandji P, Patrick Menanga A, Ashuntantang G et al. Efficiency of an intervention package for arterial hypertension comprising telemanagement in a Cameroonian rural setting: The TELEMED-CAM study. 2013. ncbi.nlm.nih.gov
- 20. Al-Bader S, Masum H, Simiyu K, S Daar A et al. Science-based health innovation in sub-Saharan Africa. 2010. ncbi.nlm.nih.gov
- 21. Brkic A, G. Kim J, Haugeberg G, P. Diamantopoulos A. Decentralizing healthcare in Norway to improve patient-centered outpatient clinic management of rheumatoid arthritis a conceptual model. 2021. ncbi.nlm.nih.gov
- 22. Kumar K, Raizada S, Mallen C, Stack R. UK-South Asian patients' experiences of and satisfaction toward receiving information about biologics in rheumatoid arthritis. 2018. [PDF]
- 23. Marie Dietrich L. The Utility of Mobile Phones for Health Among Women Living with HIV in Urban Malawi. 2016. [PDF]
- 24. Nicholas A, Alare K, AbdulBasit Opeyemi M, Oluwatosin A. The outlook of rheumatological care in Africa: Current state, challenges, and recommendation. 2022. ncbi.nlm.nih.gov

- 25. Milena Hernández-Zambrano S, Castiblanco-Montañez RA, Marcela Valencia Serna A, Nonzoque Toro V et al. Modifications in self-care, quality of life and therapeutic adherence in patients with rheumatoid arthritis during the SARS-CoV-2 pandemic treated by telehealth. 2023. ncbi.nlm.nih.gov
- 26. A. Hitchon C, M. Mody G, H. Feldman C, Lau Y et al. Perceptions and Challenges Experienced by African Physicians When Prescribing Methotrexate for Rheumatic Disease: An Exploratory Study. 2021. ncbi.nlm.nih.gov
- 27. Mutebi M, Bhatia R, Salako O, Rubagumya F et al. Innovative Use of mHealth and Clinical Technology

 Page | 145 for Oncology Clinical Trials in Africa. 2020. ncbi.nlm.nih.gov
- Salako O, Enyi A, Miesfeldt S, K. Kabukye J et al. Remote Symptom Monitoring to Enhance the Delivery of Palliative Cancer Care in Low-Resource Settings: Emerging Approaches from Africa. 2023. ncbi.nlm.nih.gov
- 29. Egharevba E, Atkinson J. The role of corruption and unethical behaviour in precluding the placement of industry sponsored clinical trials in sub-Saharan Africa: Stakeholder views. 2016. ncbi.nlm.nih.gov
- 30. Mutebi M, Scroggins D, Simons V, Ohene Oti N et al. Engaging Patients for Clinical Trials in Africa: Patient-Centered Approaches. 2020. ncbi.nlm.nih.gov
- 31. LEMA VM, Mbondo M, KAMAU EM. INFORMED CONSENT FOR CLINICAL TRIALS: A REVIEW. 2011. PDF
- 32. Khairat S, Ottmar P, Sleath B, Welch B et al. Facilitating the Informed Consent Process Using Teleconsent: Protocol for a Feasibility and Efficacy Study. 2018. ncbi.nlm.nih.gov
- 33. de Thurah A, Marques A, de Souza S, S. Crowson C et al. Future challenges in rheumatology is telemedicine the solution?. 2022. ncbi.nlm.nih.gov
- 34. El Zorkany B, Al Ani N, Al Emadi S, Al Saleh J et al. Biosimilars in rheumatology: recommendations for regulation and use in Middle Eastern countries. 2018. ncbi.nlm.nih.gov
- 35. Mbunge E, Muchemwa B, Batani J. Are we there yet? Unbundling the potential adoption and integration of telemedicine to improve virtual healthcare services in African health systems. 2022. ncbi.nlm.nih.gov

CITE AS: Ezeani N. N. (2025). Socio-Clinical Innovation: Integrating Telemedicine and Biosimilar Biologics for RA Management in Africa. RESEARCH INVENTION JOURNAL OF SCIENTIFIC AND EXPERIMENTAL SCIENCES 5(2):135-145. https://doi.org/10.59298/RIJSES/2025/52135145