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ABSTRACT 

Partial differential equations (PDEs) are foundational tools in modeling various physical phenomena in 
science and engineering. Traditional numerical methods such as finite difference, finite volume, and finite 
element methods have been the primary approaches for solving PDEs. However, these methods often 
struggle with high-dimensional and nonlinear problems. Recently, machine learning (ML) has emerged as 
a promising tool for enhancing the efficiency and accuracy of PDE solutions. This paper provides an 
overview of PDEs, traditional numerical methods for solving them, and the integration of ML techniques 
in these methods. We explore how ML, particularly deep learning, can address challenges such as the 
curse of dimensionality and computational inefficiency. The discussion includes various ML approaches, 
including physics-informed neural networks (PINNs) and data-driven discretizations, and their 
applications in fields such as fluid dynamics and medical physics. 
Keywords: Partial Differential Equations, Machine Learning, Numerical Methods, Deep Learning and 
Physics-Informed Neural Networks  

 
INTRODUCTION 

Partial differential equations (PDEs) are crucial mathematical models used to describe a wide range of 
physical phenomena, from wave propagation and heat conduction to fluid dynamics and structural 
analysis [1, 2]. Traditional methods for solving PDEs, such as finite difference methods (FDM), finite 
volume methods (FVM), and finite element methods (FEM), have been extensively developed and applied 
over the years. However, these methods often face significant challenges when dealing with high-
dimensional spaces and strongly nonlinear systems, commonly referred to as the curse of dimensionality 
(CoD). In recent years, the advent of machine learning (ML) has opened new avenues for solving PDEs 
more efficiently and accurately [3-5]. Scientific machine learning, which combines numerical analysis and 
ML, is an emerging field that leverages advances in both domains to tackle complex problems. 
Convolutional neural networks (CNNs) and attention-based deep learning architectures, which can handle 
multi-scale features and translation invariance, are particularly well-suited for PDEs [6-9]. This paper 
reviewed the integration of ML in traditional numerical methods, focusing on how ML can overcome 
existing limitations and enhance the solution process. 
                                                  Introduction to Partial Differential Equations 
In response to this, the PDE research community is increasingly considering machine learning (ML) as a 
tool for the fast and reliable solution of PDEs in multi-dimensional physical problems. Through examples 
in the data-driven discovery of PDEs, apparent since the 1990s, DL-based models have begun to 
demonstrate significant success in the learning of strongly non-linear dynamical systems. A collaboration 
of ML and numerical analysis, “scientific machine learning” is a rapidly evolving field that is constantly 
absorbing improvements in both numerical methods and statistical modeling [10-12]. Moreover, 
convolutional nets (CNNs), which preserve translation invariance in their inputs, and attention-based 
deep-learning architectures, well-suited to assimilate multi-scale features, are better optimized for PDEs 
within specialized operator-form networks designed to amplify their locality properties via motivated 
spatial discretizations without the loss of efficiency observed in full periodic [13-15]. The curse of 
dimensionality (CoD), a central problem in traditional FDM and FEM simulations, remains in their 
application to the aforementioned field. For a discretized model to develop its predictive capabilities when 
confronted with a variety of initial conditions and boundary specifications, a vast volume of training data 
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is needed, a process highlighted by diminishing returns. Although the finite element method (FEM) is 
formulated using Fréchet derivatives, the application of “reverse-mode” automatic differentiation has 
recently been reported for the solution of the time-dependent wave equation, characterized in the 
literature by the time-step summation [16, 17]. 
Partial differential equations (PDEs) are among the most widely used mathematical models to describe a 
variety of phenomena in science and engineering. PDEs are used to describe wave propagation 
phenomena and have further found a variety of applications in the context of medical physics. More 
precisely, the wave equation and its mathematical models have found relevance in ultrasound image 
reconstruction, radiation cancer therapy, and nondestructive evaluation (NDE) for quantitative data 
analysis [18, 19]. Despite satisfying the desired thermodynamic properties of a minimally invasive 
procedure, ultrasound surgery has the limitation of requiring high submillimeter precision in the target 
region. When the planned treatment is disrupted, the user needs to stop therapy and pose the patient for 
additional imaging. Work has begun in substituting standard ultrasound imagery for model predictions, 
an approach researchers in this field hope results in less required imaging and facilitates real-time 
monitoring of thermal exposure over critical structures [20, 21]. 
                                                         Definition and Classification of PDEs 
The issue can be related to the increase in the number of dimensions or the increase in the number of 
degrees of freedom. For instance, a partial differential equation of the first order, which is a system of 
ODEs, that governs an n-dimensional system will have 2n-1 spatial dimensions, which will represent, in 
any way, the boundary surface of an n-dimensional rectangular cuboid. The PDEs are difficult to handle 
mathematically, particularly for large-scale problems, and often also computationally. Usually, PDEs are 
solved using either analytical or numerical methods [22, 23]. 
PDEs are usually classified based on their properties. There are several distinct classes of partial 
differential equations: elliptic, parabolic, and hyperbolic. Other features that help to classify PDEs include 
whether the PDE is linear and whether the coefficients in the PDE are constant or considered as 
functions of the independent variables. Key feature Physical examples of PDEs include the steady-state 
heat transfer, one-dimensional viscous flow in a pipe, and some inverse heat conduction problems. In 
general, PDEs are fundamentally more challenging to solve than ordinary differential equations. This is 
because PDEs model systems with infinitely many degrees of freedom whereas ordinary differential 
equations model systems with finitely many degrees of freedom [24, 25]. 
PARTIAL differential equations (PDEs) are important mathematical models, which govern a variety of 
physical processes and have wide applications in numerous disciplines. A partial differential equation 
(PDE) is an equation that relates the values of a function defined on some domain in Euclidean space and 
its partial derivatives over this domain. The solution of a PDE is the unknown function, or a function of 
this function satisfying the equation together with suitable boundary or initial conditions [26-28]. 

           Traditional Numerical Methods for Solving PDEs 
Spectral methods are based on Fourier, Chebyshev, or other basis expansions. These methods are still 
quite competitive for problems that don't have discontinuities in spatial scales. Finite-difference method 
(FDM) and finite volume method (FVM) transform the continuous PDEs into discrete forms using a 
regular grid. They are widely used for simple code implementation structures and can be learned quickly. 
Of course, there are still essential differences between these two types of methods. For example, FDM is 
more suitable for elliptic and hyperbolic problems, and FVM is more suitable for convection-diffusion 
problems. In the past few decades, the finite element method (FEM) has become extremely popular in the 
simulation of various PDEs with irregular geometries. Specially, for fluid and structural simulations, it is 
one of the most popular choices for accuracy and effectiveness. The intrinsic computational stencil of 
FEM is sparse which makes it also become a prevalent tool of sparse linear algebraic solving [29-32]. 
In many applied sciences and engineering, we characterize real-world physical processes by PDEs. Many 
analytical solutions based on simplified assumptions and approximations are presented for PDEs, which 
also leads to a great demand for numerical simulations. However, PDEs are generally difficult to solve in 
the simulation due to their natures of high dimensionality and nonlinearity. It’s reported that the cost to 
solve PDEs may be super-linearly increased with time for traditional methods [33, 34]. To manage these 
challenging issues, a variety of traditional numerical methods have been proposed and developed. Based 
on the discretization strategy, traditional numerical methods can be generally classified into grid-based 
and mesh-based methods [35, 36]. 
                                                                 Finite Difference Methods 
The data structures are employed to store the solution variables efficiently and the arrangement of which 
depends upon the numerical method that is used for the PDE. In finite difference techniques, one of the 
common data structures used for the solutions of PDEs is matric. Multi-dimensional (ND) data are stored 
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using a flat storage layout which is expressed in B = (Bi + j + lM) where N is the number of dimensions, 
k = 0, 1, 2, … N and M=MI MI-1 M0 [37]. M0 corresponds to the number of grid points used for each 
direction and i=0, 1, 2, …, N-1. The distance and direction among the elements of the matrix are stored 
as subscript formulas. The number of elements of a matrix required by a numerical solver can be 
expressed as = (M0 1 MN-1 1( )) ND. For an m0=4 aluminum matrix with an additional integer, 64 
states can be given to fit into about 4 GB RAM [38]. 
Partial differential equations (PDEs) govern varieties of physical, biological, and societal phenomena. 
Their analytical solution is difficult to obtain and it leads to the development of numerical solution of 
PDEs (PDE solvers). The finite difference techniques provide initial and boundary conditions in a discrete 
form, so they discretize the spatial dimensions in general, to approximate the continuity and/or 
differentiability of the solutions. The goal is to approximate the solutions in such a way that they result in 
very small errors concerning the actual problems. Consequently, a collection of algebraic equations 
(system of linear or non-linear) is obtained from PDEs, which can be solved on a digital computer to 
obtain a fully discrete approximated solution, thereby serving as the foundation for advanced algorithms 
of PDEs [39-41]. 
                                                                    Finite Element Methods 
A more advanced strategy that couples FEM with a DNN, the so-called “physics-informed” neural 
network, uses prior knowledge of the PDEs to guide the training of the DNN. In the works available in 
the literature, the formulation of this prior information is problem-dependent (i.e., for the heat conduction 

the DNN, must satisfy the source term in the PDE definition, i.e., ∇u(x) = f(x) on Ω, with u(x) being the 
neural network and f(x) the source term) [42-44]. To achieve this purpose, a new class of numerical 
methods was proposed, the so-called meshless methods, including Smooth Particle Hydrodynamics 
(SPH). Recently, some works have proposed the idea to couple FEM and ML techniques. A DNN is used 
to approximate the solution at a set of input parameters, without the necessity of solving the PDE at 
these locations. This “strategy” in the numerical calculus community is known as a “response surface”, 
and it is widely used in the design of experiments to understand high-dimensional spaces/processes [45, 
46]. Finite element methods (FEM) are widely used numerical methods for approximating partial 
differential equations (PDEs). The basic idea of FEM is to replace the exact solution of a PDE with a 
discrete solution so that the continuous problem is transformed into a system of algebraic equations. The 
FEM equation error is characterized by the mesh spacing (h) and solution regularity. With mesh 
refinement and a smooth solution at the same time, the solution converges to the exact solution at a 
minimal rate. 2D and 3D problems containing adaptive meshes, curved domains, and other geometric 
complications are hard to solve using classical FEMs [47, 48]. 
                                              Integration of Machine Learning in Numerical Methods 
An important precursor to solving differential equations using ML is to solve the related problem of 
designing efficient and practical interconnections between ML models and classical, rule-based 
techniques. The overarching objective here is to harness each approach in its domain of excellence. The 
pioneering related ideas of learning coefficients in Navier—Stokes simulations using historical databases 
of complex simulations have led to a cluster of activity, under various names. Alongside these 
developments, the systematic integration of ML models with traditional simulations has also grown 
rapidly. This can range from using sophisticated ML in a post-processing role to recover detail in 
statistical simulations to hybrid methods that switch between ML and traditional techniques based on 
some learning-based decision mechanism [49-51]. Traditionally, differential equations are solved using 
specialized methods exemplified by the finite difference method and the finite element method. These are 
versatile and well-understood techniques that offer good accuracy and often work well in practice. 
Nevertheless, they face challenges when applied to complex physical systems and/or when high-fidelity 
simulations are required. One response to these challenges has been to devise new schemes specifically 
tailored to the particular problems, however, this is often a delicate process that requires significant 
expertise. As an alternative, an integrating Machine Learning (ML) — a more general-purpose approach 
for estimation and prediction across processes involving unknown dynamics [52-54]. ML is a valuable 
tool for estimating even complex, non-smooth, or chaotic phenomena that can evade the classical 
methods. ML-empowered methods can also exploit in-sample data to create reduced models which, while 
they have no well-defined basis functions, are readily employed. That is, the ML serves as an engine for a 
different numerical method [55-57]. 

Overview of Machine Learning Techniques 
Recently, unsupervised learning was advocated and used to capture the solution map. The approach 
consisted of placing warm start data points and proposed that these would facilitate the discovery of low-
dimensional structure. Unsupervised learning allows such an approach but it does not necessarily follow 
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that fully unsupervised learning automatically leads to the discovery of the low-dimensional structure. 
More general unsupervised learning approaches that only require sampling instances of the high-
dimensional input parameter space were also explored [58, 59]. 
One of the popular classical ML paradigms that have been used is supervised learning where a neural 
network is trained with pairs of inputs and the corresponding solutions for a fixed PDE. However, the 
supervised approach to learning high-dimensional PDE solution maps is intractable. To alleviate this 
difficulty, iterative learning where new samples are generated based on the solution surrogate is explored. 
Alternatively, one could attempt to learn models that allow for fast and flexible calculation of solutions to 
always-new instances of PDEs [60, 61]. 
Machine learning (ML) has recently gained significant interest in scientific computing due to its ability to 
accelerate the solution process of partial differential equations (PDEs), the differences herein are referred 
to as 'classical AI disciplines'. By integrating ML with numerical methods for PDEs, solutions can be 
approximated with cost-effective computational inference by replacing time-consuming numerical steps 
that would be required in traditional PDE-solvers. These approaches typically split in the proposed 
methodology of directly training a surrogate that emulates the full map from the parametric PDE 
problem to its solution, which is fully described by a high-dimensional input-output map and the 
approaches that alternate between physics-motivated iterative updates and ML-based surrogates [62-64]. 

Hybrid Approaches Combining ML and Traditional Methods 
One of the most classical ways to merge supervised ML models and DE solvers consists of data 
augmentation, that is, leveraging data-driven models to provide numerous approximations of certain 
operations,  that are explicitly present in the targeted DE solvers. For instance, when targeting wave-
equation solvers, using as an additional input the lossless wavelet transform of some inputs aggregates to 
help the ML model prevent information loss; while in the case of reversible neural networks, aiming at 
the natural computation of the adjoint operator and then resorting to optimization backward using the 
adjoint approach. A natural way to keep the training simpler while exploiting DEs-based priors is to 
enforce explicitly these DEs during the training of the ML model. In that respect, the most standardized 
perspective relies on PINNs; being nothing else but an energy method for collecting the scattered 
residual computations [65-67]. The past decade has witnessed a rapid growth of interest in hybrid 
approaches combining deep neural networks and traditional differential equations (DEs) solvers. 
Consequently, many promising directions have emerged, like designing efficient neural network 
architectures that respect the functional properties of the nonlinear operators present in the DEs, like 
devising PINNs (physics-informed neural networks) that exploit the governing DEs during the 
supervised training or employing neural networks as components of specific numerical methods to this 
end, which makes it feasible to raise eigensolvers or Gaussian process-based solvers. Notwithstanding 
these recent breakthroughs, the quest for a more reliable and less black-box scientific machine learning 
approach revives the close relationships between DEs and ML models. One should be able to search 
efficiently the deployment of a supervised ML model to solve a specific DE, by taking into account the 
specifics of the source DE, without making the training harder, or the achieved accuracy poorer [68-70]. 
                                                                       Data-Driven Discretization 
 There has been a growing literature over the last few years that applies machine learning (ML) to the 
study of partial differential equations. Applying ML methods to PDEs is an efficient way to define 
physical constraints implicitly, but these approaches are generally difficult to implement and rarely satisfy 
constraints exactly, due to their direct modeling of the dynamics [71, 72]. Recent studies have proposed 
data-driven methods that optimize PDE models to encode the dynamics directly and model to ensure that 
the learned models satisfy physical constraints. Another recent approach to moving past the difficulties 
that come with direct modeling of FG dynamics is to encode the FG CG boundary statistics directly 
rather than trying to memorize the full dynamical maps, with method PT as a representative example. 
Discretization is an important step when solving partial differential equations (PDEs) numerically. 
Classically, this work has been informed by linear theory only. This article studies learning data-driven 
discretizations by encoding higher-level components that are captured with simplifying assumptions and 
verifies a substantial computational advantage [73, 74]. Specifically, this work is based on a data-driven 
partial dynamics learning (DPL) method, which models only the coarse-grained (CG) variables and 
requires a fixed PDE whose form is already known from theoretical or empirical grounds in conjunction 
with the coarse-graining process. That approach is contrasted with the present methodology, in which 
‘full dynamical learning’ is employed in which the ML model additionally requires direct access to the 
fine-grained (FG) variables. DPL learns only the basis features used to express the true dynamics co-
domain [75, 76]. 
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                                                              Applications and Case Studies 
Following the growing interest in the area, various models and approaches have been proposed for the 
high-dimensional classical PDEs as time-space dependent: using regression models and feed-forward 
neural networks, adaptive resolution training of neural networks using stacked Boussiness equations and 
KdV systems, learning compact representation from time series for solvers of evolution equations (such as 
Burgers’, Fisher-KPP, Kuramoto-Sivashinsky, code-equation, normalized-LAP, KS) by minimizing the 
cost function in the temporal domain, computation resource-efficient overturning solutions for PDEs, 
physics-informed machine learning techniques using numerical time arrival information and 
convolutional neural networks on wave field, using reinforcement learning frameworks with observation 
action reward (OAR) scheme and travel time, PDEs with bulk reading in physics-informed real 
embeddings [77, 78]. 
The ability of machine learning (ML) to learn from historical data to make decisions has made it a very 
powerful and popular tool in various domains [79]. In recent years, the research community has 
witnessed the emergence of a powerful combination of classical numerical solvers and ML, where ML 
models are used to accelerate existing numerical solvers, train reduced-order models and surrogate 
models to approximate the solutions of high-dimensional PDEs with a much smaller number of 
parameters, or even optimize the numerical solvers. In addition, the ability of the ML algorithms to learn 
and approximate the complex relationships in input and output data has been exploited to identify the 
appropriate discretizations of the continuous PDEs and even control them; this way, they have been used 
to solve high-dimensional PDEs directly without any discretization step. Efforts have been made to apply 
modern machine-learning techniques in the aforementioned area in various domains [80, 81].  
                                                              Fluid Dynamics Problems 
Besides developing the proper ML-based sub-solvers, the other challenge to solving large classes of 
problems with the described approach is to develop a suitable ML-based method to construct the sub-
systems responsible for generating the discrete weak solutions arising from the separation of the time 
scales. Moreover, the numerical integration from one light system of the reduced basis to the next one 
must ensure that the reduction strategy explicitly accounts for the presence of external forces with 
unknown forms. Here, an ML-enhanced strategy, called unsupervised proper generalized decomposition, 
to approach deep-learning-based MorRom built on a recursive neural network will be successfully applied 
to general, convection-dominated problems with strong boundary layer behavior. In this paper, this 
approach is applied to 1D test problems over thermo-fluid-dynamics benchmark domains; in 2D, various 
geometries will be analyzed under different initial or boundary conditions [82, 83]. Machine learning 
(ML) and artificial intelligence (AI) have found good acceptance in computational fluid dynamics (CFD) 
to predict, accelerate, and improve the results of flow simulations [84]. Typically, machine learning 
algorithms are used to predict the properties of the fluid, its behavior, and its characteristics. Reports 
have also shown that machine learning and deep learning algorithms have been integrated within CFD 
solvers to bypass various sub-models and reduce computational costs. However, most of these studies 
applied machine learning, deep learning, and AI to bypass various hydrodynamics, turbulence, and heat 
transfer models present in CFD solvers, Model Order Reductions (MORs), and Reduced Order Models 
(ROMs) based on machine learning and AI. Proper handling of singularities, discontinuities, and 
boundary layers, particularly in the context of highly complex conservation law problems [85]. 

CONCLUSION 
The integration of machine learning with traditional numerical methods for solving partial differential 
equations represents a significant advancement in computational science. By leveraging the strengths of 
both fields, it is possible to overcome many of the challenges associated with high-dimensional and 
nonlinear PDEs. Techniques such as physics-informed neural networks and data-driven discretizations 
demonstrate the potential for ML to enhance the accuracy and efficiency of PDE solutions. As the field of 
scientific machine learning continues to evolve, it promises to deliver more robust and versatile tools for 
tackling complex physical phenomena in various domains, from fluid dynamics to medical physics. Future 
research will likely focus on refining these hybrid approaches, improving their computational efficiency, 
and expanding their applicability to a broader range of problems. 
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