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ABSTRACT 

Quantum computing is an emerging field that integrates principles of quantum mechanics with computer 
science, mathematics, and electrical engineering to address complex computational problems. This paper 
explores the potential of quantum computing in the realm of mathematical optimization, where classical 
algorithms have traditionally been employed. By examining both classical and quantum optimization 
algorithms, such as Quantum Annealing and the Quantum Approximate Optimization Algorithm 
(QAOA), we highlight the current advancements and challenges in achieving quantum speedup. Although 
no general quantum algorithm provides a speedup for global optimization problems, certain classes 
benefit from quantum approaches. This paper discusses the foundational principles, recent developments, 
and comparative performance of classical and quantum optimization techniques, emphasizing the 
transformative potential of quantum computing. 
Keywords: Quantum Computing, Mathematical Optimization, Quantum Annealing, Quantum 
Approximate Optimization Algorithm (QAOA), Classical Algorithms, Global Optimization, Variation 
Algorithms, NISQ Computers 

 
INTRODUCTION 

Optimization is the process of finding the input that minimizes or maximizes a given mathematical 
function. This field has vast applications in commerce, industry, and science, where classical computers 
have traditionally been used to solve practical optimization problems [1, 2]. These classical solvers 
iteratively refine solutions until a satisfactory outcome is reached. Global optimization, a specific subset, 
involves finding the absolute best solution in the entire search space, often employing methods like 
backtracking search algorithms [3, 4]. Quantum computing, a field that merges quantum physics with 
computational techniques, holds promise for revolutionizing optimization. Quantum algorithms, such as 
Shor’s algorithm, demonstrate potential exponential speedup over classical methods for certain problems 
[5]. This paper reviewed the principles of quantum mechanics that underpin quantum computing, 
explored classical and quantum optimization techniques, and evaluated their relative performance and 
applicability. 
                                                                    Quantum Computing 
Given a mathematical function of one or more variables, optimization is the problem of finding the input 
that minimizes or maximizes the value of the function. Throughout history, numerous mathematical and 
computational techniques have been developed to attack these tasks and optimization has been observed 
in various forms in a large number of commercial/industrial applications as well as scientific studies [6, 
7]. In solving practical optimization problems, classical computers are currently used. In general, these 
everyday classical optimization solvers work on the principle of iteratively refining a proposal solution 
until a ‘trough’ (or peak) is found that fulfills the desired quality constraints. It has been known for many 
years that some specific forms of optimization problems form a class called GLOBAL OPTIMIZATION; 
for example, it was shown that smooth unimodal functions can have only one global minimum and that a 
convergence to the global minimum can be found deterministically by using a backtracking search 
algorithm that refines a search ‘trough’ (proposal solution) based on local probe readings in the 
neighborhood [8, 9]. To date, there are no known quantum algorithms that provide speedup for 
problems in the general case of global optimization. However, at least for some particular classes of 
optimization problems, quantum algorithms can provide exponential speedup [10, 11]. Quantum 
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computing is a flourishing field that merges the disciplines of quantum physics, mathematics, computer 
science, and electrical engineering to create a new technology for secure communication, improving 
machine learning algorithms from the classical point of view, better optimization algorithms, and 
improved planning or scheduling algorithms [12, 13]. Let’s take an example of cryptography, a quantum 
computer can attack the current public key cryptosystems. Shor’s algorithm for factoring is as of 2021, 
around 30 million times faster than currently best known classical algorithms. Quantum computers can 
solve particular optimization problems exponentially faster than classical computers [14, 15]. 

Basic Principles of Quantum Mechanics 
Apart from these complex mathematical and analytical models, what is more, exciting in the field of 
quantum mechanics is that these complex models can also be presented very vividly in the form of a new 
approach to computing and that is Quantum Computing [16, 17]. Else it makes sense if we think of 
classical computing as the art of arranging 0s and 1s to manipulate and retrieve the desired output based 
on choices in the arrangement [18, 19]. So, this new computing made us think in the new realm of 
physics that is Quantum Physics. At this point, we start converging our views to more concrete 
mathematics and physics where we see the classical computers as a subset or reformulation of the 
quantum computing world. With this highly deterministic and predictable classical world we have, we 
find extremely unconventional gadgets and pieces of mathematics when we step into the world of 
quantum computing [20, 21]. Quantum mechanics is a theory that explains the behavior of fundamental 
particles and their interactions with other particles under different conditions. The central highlight of 
quantum mechanics is that it is probabilistic, meaning that we can predict the behavior of a system only 
statistically [22, 23]. With the Birth of quantum mechanics in the early 20th century, comes a lot of 
controversial aspects of nature, and it is the pioneers of this theory like Erwin Schrödinger, Max Born, 
and Werner Heisenberg who gave us a thorough understanding of the same. Due to these complex 
statistical predictions, many problems emerged in the mathematical model of these atomic systems [24, 

25]. For example, there is no concept of λ = pt in quantum mechanics and this is where we start to face 
issues of conservation of momentum and energy [26]. 
                                                            Mathematical Optimization 
To solve optimization problems, classical information processing uses algorithms. Examples of classical 
optimization algorithms include the Nelder-Mead simplex search algorithm, which is very effective in an 
arbitrary number of dimensions when derivatives are not known or convexity and boundedness are 
uncertain. Other examples include coordinate search methods, which perform an exhaustive line search in 
each direction and use its results to determine the subsequent line searches and limits on the search step 
size to mitigate divergence [27-29]. Simulated annealing uses the Metropolis algorithm or other 
statistical mechanics techniques to solve large, multivariate problems. Certain algorithms like the Matt-
ball method rely on a likelihood ratio and are therefore not efficient when the distribution is exponentially 
hard to sample from once a set of variables is fixed. Optimization problems are everywhere. They arise in 
transporting goods, resource management, and scheduling production. Some common optimization tasks 
include finding the shortest route for moving information or material, designing electronics for 
performance and cost, and maximizing returns on an investment portfolio [30-32]. Familiar optimization 
problems include finding the most likely source of a signal “originating” from many sources (Gaussian 
Maximum Likelihood Estimation), clustering data into as few sets as possible (k-Means), and picking 
fewer variables than an infinite list that on average models the data just a little bit worse (Stepwise). 
Finding the best path through a graph is of widespread interest in computer algorithms because the task 
appears in many important settings like routing network traffic and identifying software viruses/bots 
[33-35]. Mathematical optimization is a subfield of mathematics and computer science concerned with 
finding the “best” solution to a problem out of all of the possible solutions. That is, mathematical 
optimization seeks the maximum or minimum of a quantity of interest, subject to some constraints. 
Optimization problems take many forms and can be categorized in terms of the number of free variables, 
linearity, convexity, and structure. Algorithms for optimization tasks are foundational in computer 
science and used in nearly all areas of engineering and computational science, including machine learning, 
statistics, data modeling, and quantum information science [36-38]. 
                                         Fundamental Concepts and Problem Formulations 
Quantum optimization centers mainly on classical combinatorial optimization mathematical problems, 
which specifically belong to non-convex problems. Quantum optimization methods for continuous 
problems are classically obtained as a result of the exploitation of the Continuous Variable Quantum 
Computing (CVQC) protocol in the quantum algorithm design, and the problem setup differs between the 
single objective and multi-objective mathematical problem formulations. Two basic approaches design the 
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quantum optimization methods: quantum-based meta-heuristic mathematical methods and quantum non-
meta-heuristic search methods. Quantum-based meta-heuristic methods transform the quantum meta-
heuristic algorithms applied to the large-scale combinatorial problem of size n and the quantum ANN 
meta-heuristic algorithm [39, 40]. Quantum non-meta-heuristic search methods include the Variational 
Quantum Eigensolver (VQE), Quantum Approximate Optimization Algorithm (QAOA), Quantum 
Adiabatic Algorithm (QAAQ), Quantum Amplitude Estimation (QAE) and the Harrow-Hassidim- Lloyd 
(HHL) algorithm. The QEO design can belong to quantum combinatorial optimization problems, 
quantum continuous optimization problems, or hybrid-discrete-continuous mathematical problem 
formulations, and the hybrid D/Q optimization problem is defined [41, 42]. Quantum computing is a 
paradigm of computation that uses quantum mechanical phenomena, such as superposition and 
entanglement to process information. It can be devised as a mathematics framework and exploited to 
solve problems that belong to emerging fields of quantum computing algorithms, quantum machine 
learning, and quantum supremacy. Mathematics optimization aims to find the best solution, the global 
minimum, of a given problem under some conditions [43, 44]. Let us assume to have a smoothly-real 

function f(x) of n-real variables, such that we want to solve minf(x) with subject to x = (x1, . . . , xn)∈AN, 

with AN ⊂ Rn. The solution to the mathematical optimization presented in the previous description is 

formally written as the following: x∗ = argmin{ f(x) | f(x) ≤ f(x∗0), x ∈ AN } with f(x∗) = min{ f(x) | x ∈ 

AN } and x∗0 optimization starting point (or initial/guess solution) of the optimization problem. In the 
context of optimization, SOTA classical methods can be classified into local and global optimization 
methods and machine-learning supported mathematical optimization strategies [45, 46]. 

Classical Algorithms for Mathematical Optimization 
There are also specifically tailored algorithms to solve convex optimization problems, but the current 
interest in quantum algorithms is mostly focused on non-convex problems. The state-of-the-art quantum 
algorithms for non-convex mathematical optimization can be grouped into quantum annealing and 
Quantum Approximate Optimization Algorithms (QAOA). Classical algorithms include evolutionary 
algorithms, greedy methods, linear and non-linear programming, and penalty and barrier methods as well 
as algorithms dealing with other reformulations of the original problem [47, 48]. Although all the 
classical methods offer both convergence and termination, a critique of the classical algorithms is that 
they are only locally convergent [49, 50]. Typically, their progress terminates when having reached 
sufficient precision or when a certain number of iterations have been passed. Since large-scale 
optimization problems are usually non-convex, the chance of finding the global minimum a priori is 
negligible in classical methods. Classic heuristics often achieve super-linear or even exponential 
convergence rates but sacrifice the guarantee to obtain a global solution [51, 52]. The domain of 
mathematical optimization is vast and of paramount importance in many applicable fields. It can be 
categorized into continuous, discrete, and combinatorial optimization problems, further compounded by 
the multiplicity of objective functions and constraint types. Classical algorithms for mathematical 
optimization are highly effective and an overwhelming amount of literature has been dedicated to the 
subject [53, 54].  
                                                 Quantum Computing for Optimization Problems 
The quantum approximate optimization algorithm (QAOA) is a hardware-efficient variational algorithm 
particularly designed for near-term quantum computers, and it has been widely adopted and studied as a 
framework to address the problem of combinatorial optimization. When addressing the scheduling 
problem, QAOA reports reasonable outcomes. However, the requirements for the quantum resources 
necessary for QAOA optimization limited the scale of the scheduling challenge and may lead to 
suboptimal answers. Nevertheless, the main advantages of utilizing QAOA compared to classical 
algorithms lie in its potential for faster runtime as well as its capacity to seek the optimal answers 
simultaneously [55-57]. Discrete/continuous optimization typically emerges in a wide range of practical 
optimization problems, such as constrained optimization, mixed-integer linear programming, and global 
optimization. Classical solution strategies include gradient-based continuous optimization solvers and 
exact/computational combinatorial optimization solution solvers including branch and bound and branch 
and cut [58, 59]. The hybrid discrete/continuous class of optimization problems is NP-hard, and exact 
methods are quite limited because many of them are contingent on highly efficient QUBO convertors. 
There exists a need for novel and robust solution strategies for large-scale hybrid optimization problems 
to serve as the basis for cross-layer and end-to-end accommodations for network resources in integrated 
fronthaul/backhaul/cloud segments, network slicing, and reconfiguration. Key enabling technologies 
include quantum computing, quantum computation, quantum annealing, and quantum adiabatic 
optimization [60, 61]. The famous computer scientist Ronald Rivest once referred to optimization as the 
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"science of better", This science usually requires the discovery of a configuration or decision choice that is 
best among a set of different alternatives. For a classical computer, this is challenging, but for a quantum 
computer, it's possible to solve them faster than any other computer, specifically in terms of the number of 
computational steps or algorithms that the computer employs. Quantum computing provides two primary 
algorithms for optimization problems in two main models. The first is the Quantum Adiabatic Algorithm 
(QAOA), which is designed for solving combinatorial optimization tasks such as Max-Cut and Traveling 
Salesman, and the second is Grover's search algorithm, which is attributed as the most frequently 
referenced optimization algorithm utilized by the quantum computer [62, 63]. In the presence of 
imperfections in quantum computers, physical qubits in a quantum computer are susceptible to 
disturbances and noise, considered the main barriers that limit the potential of the quantum computer to 
approach its idealized strategy for quantum computation. However, algorithm developers are designing 
algorithm architectures that function effectively despite these limitations, frequently referred to as 
"quantum optimizers" [64, 65]. 
                                                                        Quantum Annealing 
Quantum Annealing Optimization applications are useful for commercial, governmental, and scientific 
activities such as supply chain logistics, robotics, quantum machine learning, and deep neuroscience. 
Quantum annealing is a successful quantum approach, especially for optimization. Currently, the biggest 
challenge of quantum annealing is how to have a full quantum implementation. Further, quantum 
annealing becomes part of a NISQ quantum computational approach for an enhanced rather than 
complete quantum implementation [66, 67]. Selecting highly programmable and leak-resistant qubits to 
be the main qubits in implementation and setting less leakage-resistant qubits to be the ancillary qubits 
can improve the performance of quantum annealing. Quantum annealing algorithm encodes optimization 
problems into quantum Hamiltonians (H(t)) and then adiabatically (i.e., slowly with time) evolves this 
Hamiltonian into an annealing final Hamiltonian which adiabatically also transforms back to standard 
optimization cost functions to be measured. The important characteristic of natural quantum annealing is 
that it halves hardware demands in doing optimization due to quantum parallelism [68, 69]. Algorithms 
are a key part of any quantum computing framework, and mathematical optimization is one of the main 
problems in the field of computer science. Quantum annealing, a prominent quantum optimization 
algorithm, is on pace for near-term implementation on existing quantum hardware [70, 71]. Quantum 
annealing is based on adiabatic quantum computation and can be performed on superconducting qubits, 
ions trapped in electromagnetic fields, or other quantum hardware. Some notable quantum annealers 
include the D-Wave 2X, 2000Q, and Advantage, and the upcoming Bo Eun, Clare, and Anneata machines 
[72, 73]. 
                                        Quantum Approximate Optimization Algorithm (QAOA) 
In recent months, we have also been witnessing the implementation of quantum versions of the already 
mentioned approximate classical optimization algorithms for practical problems with large and non-
trivial structures, and also for geometric optimization problems that are not directly based on 
combinatorial ones, such as continuous variants of graph semidefinite programming formulations, etc. 
Some works explored in depth some of the optimization problems for which it seems infeasible to obtain 
classic lower bounds [74, 75]. Concerning the applicability of QAOA, we also have to understand that its 
usage is not trivial, and also not immune to the effects of the enormous resource limitations of NISQ 
computers. Moreover, the quantum and mixed nature of the constraints give origin and introduce the 
necessity of using ancillae to enforce them, and also make the Pavage problem considered a non-trivial 
problem in that respect. Even though demonstrations of QAOA’s potential to solve combinatorial 
optimization problems in proof-of-principle experiments with real NISQ hardware are increasing, there is 
an evident potential to extend current benchmarking efforts [76, 77]. The Quantum Approximate 
Optimization Algorithm (QAOA) is a variational quantum algorithm, which is among the leading 
candidates for achieving quantum advantage in the context of combinatorial optimization problems. In its 
most direct application, QAOA treats an optimization problem increasingly as a problem of finding the 

ground eigenstate of a certain Hamiltonian ω(Hp + Hm) through an initial-state preparation as a 
superposition of unstructured computational basis states, called a reference, followed by an iterative, 
adaptative rotation between those states, alternately under the Hamiltonians Hp and Hm, with the 
presence of more involved, ancilla-based circuits when found necessary for a more efficient standard cost 
function evaluation (the direct approach to problems involving such ancilla-based circuits is, for example, 
to interpret the property to be enforced as a quantum-constrained optimization problem, on which we 
nevertheless can still employ QAOA) [78, 79]. 
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 Comparative Analysis of Quantum and Classical Optimization Algorithms 
Benchmarking is significantly important, the experimental results also show that the quantum 
optimization experiments using the same quantum annealer are deceptive because the optimization 
problems found in each trial run are different. Interestingly, hybrid algorithms obtain the quantum 
advantage and we simply conclude that the iterative-repeated classical optimization steps before and/or 
between the subroutines encoded by our quantum circuits could help attain the quantum advantage. Such 
diversity provides the penalty of its increased number of iterations, as well as both of our hybrid 
optimizers’ robustness against noise. It ensures that a quantum speed-up will be achieved in individual 
trials even in highly diverse landscapes similar to those discovered here [80, 81]. Various factors play a 
role in accelerating the performance of the purely optimized algorithms and QAOA. The promised 
quantum advantage is subjected to many parameters, such as the structure of the input problem instance 
and allowable error rates. So, it is very important to benchmark the quantum algorithms repeatedly and 
abstractly (i.e., statistically average it) on massively repeated runs. We observe that the major 
deterministic algorithms with complex polynomial time in a noisy environment (i.e., NISQ era quantum 
computer) are supposed to perform better as variational algorithms because variational algorithms are 
exponentially large in the number of gates, improving the practical error rates [82, 83]. Quantum 
computing and its anticipated superiority over the traditional digital computer has the outstanding 
potential to address exponential-time-hard optimization problems with a polynomial-time complexity 
[84, 85]. Complexity classically increases with problem size, but quantumly, it remains in polynomial 
time, as in our experience with chemistry calculations. As we straightforwardly assess the speed-ups 
achieved through quantum algorithms (exponential, quadratic, polynomial, logarithmic, and constant), 
most of the pure optimization algorithms do not promise an exponential or quadratic advantage, however, 
the QAOA has the expected speedup [86, 87]. 

  CONCLUSION 
Quantum computing represents a significant leap forward in computational capabilities, particularly for 
optimization problems. While classical algorithms remain effective for many applications, quantum 
approaches like Quantum Annealing and QAOA offer potential speedup and improved efficiency for 
specific problem classes. Despite challenges, such as resource limitations and noise in NISQ computers, 
ongoing advancements in quantum algorithms and hardware suggest a promising future for quantum 
optimization. This comparative analysis underscores the transformative impact quantum computing could 
have on optimization, paving the way for new scientific and industrial applications. 

     REFERENCES 
1. Sadrehaghighi, Ideen. (2022). Optimization Problem. 10.13140/RG.2.2.10973.69605/1. 
2. Klug, Florian. (2023). Quantum Optimization Algorithms in Operations Research: Methods, 

Applications, and Implications. 10.48550/arXiv.2312.13636. 
3. Baritompa, William & Bulger, D. & Wood, Graham. (2005). Grover's Quantum Algorithm 

Applied to Global Optimization. SIAM Journal on Optimization. 15. 1170-1184. 
10.1137/040605072. 

4. Kadry, Seifedine & ELHami, Abdelkhalak. (2016). Global optimization method for design 
problems. Engineering Review. 36. 149-156. 

5. Rayhan, Abu. (2024). Unraveling the Mysteries of Quantum Computing: Current Trends and 
Future Directions. 10.13140/RG.2.2.11137.88160. 

6. Makansi, J. (2024). A Greedy Quantum Route-Generation Algorithm. [PDF] 
7. Zeguendry, A., Jarir, Z., & Quafafou, M. (2023). Quantum Machine Learning: A Review and Case 

Studies. ncbi.nlm.nih.gov 
8. Ciliberto, C., Herbster, M., Davide Ialongo, A., Pontil, M., Rocchetto, A., Severini, S., & 

Wossnig, L. (2018). Quantum machine learning: a classical perspective. ncbi.nlm.nih.gov 
9. Lubinski, T., Coffrin, C., McGeoch, C., Sathe, P., Apanavicius, J., & E. Bernal Neira, D. (2023). 

Optimization Applications as Quantum Performance Benchmarks. [PDF] 
10. Abbas, A., Ambainis, A., Augustino, B., Bärtschi, A., Buhrman, H., Coffrin, C., Cortiana, G., 

Dunjko, V., J. Egger, D., G. Elmegreen, B., Franco, N., Fratini, F., Fuller, B., Gacon, J., 
Gonciulea, C., Gribling, S., Gupta, S., Hadfield, S., Heese, R., Kircher, G., Kleinert, T., Koch, T., 
Korpas, G., Lenk, S., Marecek, J., Markov, V., Mazzola, G., Mensa, S., Mohseni, N., Nannicini, 
G., O'Meara, C., Peña Tapia, E., Pokutta, S., Proissl, M., Rebentrost, P., Sahin, E., C. B. Symons, 
B., Tornow, S., Valls, V., Woerner, S., L. Wolf-Bauwens, M., Yard, J., Yarkoni, S., Zechiel, D., 
Zhuk, S., & Zoufal, C. (2023). Quantum Optimization: Potential, Challenges, and the Path 
Forward. [PDF] 

https://arxiv.org/pdf/2405.03054
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955545/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806018/
https://arxiv.org/pdf/2302.02278
https://arxiv.org/pdf/2312.02279


 
 
 
https://rijournals.com/engineering-and-physical-sciences/   

P
ag

e
4

7
 

11. Urgelles, H., Picazo-Martinez, P., Garcia-Roger, D., & F. Monserrat, J. (2022). Multi-Objective 
Routing Optimization for 6G Communication Networks Using a Quantum Approximate 
Optimization Algorithm. ncbi.nlm.nih.gov 

12. G. Guerreschi, G. & Y. Matsuura, A. (2019). QAOA for Max-Cut requires hundreds of qubits for 
quantum speed-up. ncbi.nlm.nih.gov 

13. Au-Yeung, R., Chancellor, N., & Halffmann, P. (2022). NP-hard but no longer hard to solve? 
Using quantum computing to tackle optimization problems. [PDF] 

14. Ajagekar, A., Humble, T., & You, F. (2019). Quantum Computing based Hybrid Solution 
Strategies for Large-scale Discrete-Continuous Optimization Problems. [PDF] 

15. Cordier, B., P. D. Sawaya, N., Giacomo Guerreschi, G., & K. McWeeney, S. (2022). Biology and 
medicine in the landscape of quantum advantages. ncbi.nlm.nih.gov 

16. Stephen Ndubuisi Nnamchi, Faith Natukunda, Silagi Wanambwa, Enos Bahati Musiime, Richard 
Tukamuhebwa, Titus Wanazusi, Emmanuel Ogwal (2023), Effects of wind speed and 
tropospheric height on solar power generation: Energy exploration above ground level. Elsevier 
publisher. 9, 5166-5182. 

17. Kizito, B. W.(2023). An SMS-Based Examination Relaying System: A Case Study of Kampala 
International University Main Campus. IDOSR JOURNAL OF SCIENCE AND 
TECHNOLOGY. 9(1), 1-26. 

18. Solomon Muyombya Matovu. (2017). On empirical power of univariate normality testsunder 
symmetric, asymmetric and scaled distributions. International Journal of Scientific & 
Engineering Research. 8(3), 381-387.  

19. Elias Semajeri Ladislas. (2023). Personalizing Government Services through Artificial 
Intelligence: Opportunities and Challenges. Indian Journal of Artificial Intelligence and Neural 
Networking (IJAINN). 3(5), 13-18. 

20. Elias Semajeri Ladislas, Businge Phelix. (2023). FACTORS AFFECTING E-GOVERNMENT 
ADOPTION IN THE DEMOCRATIC REPUBLIC OF CONGO. International Research 
Journal of Engineering and Technology (IRJET). 9(3), 1309-1323. 

21. Elias Semajeri Ladislas. (2021). Social media and covid19, implications on consumer behavior and 
social life in uganda. International Journal of Engineering and Information Systems. 5(3), 102-
107. 

22. Kareyo Margaret Elias Semajeri Ladislas,Businge Phelix Mbabazi,Muwanga Zaake Wycliff. 
(2020). E-Government Development Review in Africa: an Assessement of Democratic Republic 
of Congo's Global E-Government UN Ranking. International Journal of Engineering and 
Information Systems. 4(11), 47-55. 

23. Mohammad Lubega, Martin Karuhanga. (2022). On the Eigenvalue problem involving the Robin 
p(x)-Laplacian. Annals of Mathematics and Computer Science. 7(7), 1-11. 

24. Taban James. (2023). An Online Mobile Shopping Application for Uchumi Supermarket in 
Uganda. IDOSR JOURNAL OF SCIENCE AND TECHNOLOGY. 9(2), 74-82. 

25. Akumu Mary. (2023). A Mobile Application to Enable Users to View Bus Schedules and Extend 
Bus Booking and Reservation Services. EURASIAN EXPERIMENT JOURNAL OF 
ENGINEERING. 4(1), 84-104.  

26. Bell, J. S. [1964]: ‘On the Einstein-Podolsky-Rosen paradox’, Physics, 1:195-200, repr. in: J. S. 
Bell, Speakable and Unspeakable in Quantum Mechanics, 2nd edition, 2004, pp. 14-21. 

27. Mehta, Vivek & Dasgupta, Bhaskar. (2012). A constrained optimization algorithm based on the 
simplex search method. Engineering Optimization - ENG OPTIMIZ. 44. 537-550. 
10.1080/0305215X.2011.598520. 

28. Eze VHU, KCA Uche, WO Okafor, E Edozie, CN Ugwu, FC Ogenyi (2023). Renewable Energy 
Powered Water System in Uganda: A Critical Review. Newport International Journal of 
Scientific and Experimental Sciences (NIJSES). 3(3), 140-147. 

29. Chikadibia Kalu Awa Uche, Eza Val Hyginus Udoka, Abigaba Kisakye, Kugonza Francis 
Maxwell, Okafor O Wisdom. 2023  Design of a Solar Powered Water Supply System for Kagadi 
Model Primary School in Uganda. Journal of Engineering, Technology, and Applied Science 
(JETAS) 5(2), 67-78. 

30. Wegener, Ingo. (2005). Simulated Annealing Beats Metropolis in Combinatorial Optimization. 
Lecture Notes in Computer Science. 3580. 10.1007/11523468_48. 

31. Chikadibia KA Uche, Fwangmun B Wamyil, Tamunokuro O Amgbara, Itafe V Adacha. 2022  
Engineering properties of concrete produced using aggregates from polyethene terephthalate 
plastic waste. International Journal of Academic Engineering Research. 6(6), 47-55. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570750/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6502860/
https://arxiv.org/pdf/2212.10990
https://arxiv.org/pdf/1910.13045
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709576/
https://www.sciencedirect.com/science/article/pii/S2352484723006327
https://www.sciencedirect.com/science/article/pii/S2352484723006327
https://scholar.google.com/scholar?cluster=7517513932228592279&hl=en&oi=scholarr
https://scholar.google.com/scholar?cluster=7517513932228592279&hl=en&oi=scholarr
https://www.researchgate.net/profile/Lukman-Nafiu-2/publication/324483466_On_Empirical_Power_of_Univariate_Normality_Tests_under_Symmetric_Asymmetric_and_Scaled_Distributions/links/6232c396069a350c8b944480/On-Empirical-Power-of-Univariate-Normality-Tests-under-Symmetric-Asymmetric-and-Scaled-Distributions.pdf
https://www.researchgate.net/profile/Lukman-Nafiu-2/publication/324483466_On_Empirical_Power_of_Univariate_Normality_Tests_under_Symmetric_Asymmetric_and_Scaled_Distributions/links/6232c396069a350c8b944480/On-Empirical-Power-of-Univariate-Normality-Tests-under-Symmetric-Asymmetric-and-Scaled-Distributions.pdf
https://www.journals.latticescipub.com/index.php/ijainn/article/view/574
https://www.journals.latticescipub.com/index.php/ijainn/article/view/574
https://www.academia.edu/download/89315457/IRJET_V9I3242.pdf
https://www.academia.edu/download/89315457/IRJET_V9I3242.pdf
https://scholar.google.com/scholar?cluster=15712554409447812895&hl=en&oi=scholarr
https://scholar.google.com/scholar?cluster=15712554409447812895&hl=en&oi=scholarr
https://lamintang.org/journal/index.php/jetas/article/view/548
https://lamintang.org/journal/index.php/jetas/article/view/548
https://www.researchgate.net/profile/Chikadibia-Kalu-Uche/publication/361668727_Engineering_Properties_of_Concrete_produced_using_Aggregates_from_Polyethylene_Terephthalate_Plastic_Waste/links/62bef99c3d26d6389e896c5b/Engineering-Properties-of-Concrete-produced-using-Aggregates-from-Polyethylene-Terephthalate-Plastic-Waste.pdf
https://www.researchgate.net/profile/Chikadibia-Kalu-Uche/publication/361668727_Engineering_Properties_of_Concrete_produced_using_Aggregates_from_Polyethylene_Terephthalate_Plastic_Waste/links/62bef99c3d26d6389e896c5b/Engineering-Properties-of-Concrete-produced-using-Aggregates-from-Polyethylene-Terephthalate-Plastic-Waste.pdf


 
 
 
https://rijournals.com/engineering-and-physical-sciences/   

P
ag

e
4

8
 

32. Val Hyginus Udoka Eze, Enerst Edozie, Okafor Wisdom, Chikadibia Kalu Awa Uche. (2023). A 
Comparative Analysis of Renewable Energy Policies and its Impact on Economic Growth: A 
Review. International Journal of Education, Science, Technology, and Engineering. 6(2), 41-46. 

33. Hennig, Christian. (2007). Cluster-wise assessment of cluster stability. Computational Statistics 
& Data Analysis. 52. 258-271. 10.1016/j.csda.2006.11.025. 

34. Chikadibia Kalu Awa Uche, Sani Aliyu Abubakar, Stephen Ndubuisi Nnamchi, Kelechi John 
Ukagwu. (2023). Polyethylene terephthalate aggregates in structural lightweight concrete: a 
meta-analysis and review. Springer International Publishing. 3(1), 24. 

35. Val Hyginus Udoka Eze, Chikadibia Kalu Awa Uche, Ugwu Chinyere, Okafor Wisdom, Ogenyi 
Fabian Chukwudi (2023). Utilization of Crumbs from Discarded Rubber Tyres as Coarse 
Aggregate in Concrete: A Review. International Journal of Recent Technology and Applied 
Science (IJORTAS) 5(2), 74-80. 

36. Farhat, I.A. & El-Hawary, Mo. (2009). Optimization methods applied for solving the short-term 
hydrothermal coordination problem. Electric Power Systems Research. 79. 1308-1320. 
10.1016/j.epsr.2009.04.001. 

37. Val Hyginus Udoka Eze, Chikadibia Kalu Awa Uche, O Okafor, Enerst Edozie, N Ugwu 
Chinyere, Ogenyi Fabian Chukwudi. (2023) Renewable Energy Powered Water Supply System 
in Uganda: A Critical Review. 3(3). 

38. Chikadibia K.A. Uche, Tamunokuro O. Amgbara, Morice Birungi, Denis Taremwa. Quality 
Analysis of Water from Kitagata Hot Springs in Sheema District, Western Region, Uganda. 
International Journal of Engineering and Information Systems. 5(8), 18-24. 

39. Symons, Benjamin & Galvin, David & Şahin, M. Emre & Alexandrov, Vassil & Mensa, Stefano. 
(2023). A practitioner’s guide to quantum algorithms for optimisation problems. Journal of 
Physics A: Mathematical and Theoretical. 56. 10.1088/1751-8121/ad00f0. 

40. Chikadibia KA Uche, Tamunokuro O Amgbara.( 2021). Development of Predictive Equation for 
Evaporation in Crude Oil Spill on Non–Navigable River. Development. 2020 4(8), 169-180. 

41. Blekos, Kostas & Brand, Dean & Ceschini, Andrea & Chou, Chiao-Hui & Li, Rui-Hao & Pandya, 
Komal & Summer, Alessandro. (2023). A Review on Quantum Approximate Optimization 
Algorithm and its Variants. 10.48550/arXiv.2306.09198. 

42. Chikadibia K.A. Uche, Alexander J. Akor, Miebaka J. Ayotamuno, Tamunokuro Amgbara. (2020) 
Development of Predictive Equation for Dissolution in Crude Oil Spill on Non–Navigable River. 
International Journal of Academic Information Systems Research. 4(7), 

43. Haart, Miriam & Hoffs, Charlie. (2019). Quantum Computing: What it is, how we got here, and 
who’s working on it.. 

44. Tamunokuro O. Amgbara, Ishmael Onungwe, Chikadibia K.A. Uche, Louis A. Uneke. 2020  
Design and Simulation of Water Distribution Network Using Epanet  Hydraulic Solver Software 
for Okochiri Community, Okrika Local Government Area.  JOURNAL OF ADVANCEMENT 
IN ENGINEERING AND TECHNOLOGY. 8(1) 

45. Andrew Novocin, Damien Stehl´e, and Gilles Villard. An lll-reduction algorithm with quasi-
linear time complexity: extended abstract. In Lance Fortnow and Salil P. Vadhan, editors, STOC, 
pages 403–412. ACM, 2011.  

46.  Frederick Rickey. Mathematics of the Gregorian calendar. The Mathematical Intelligencer, 
7(1):53–56, 1985. 

47. Harwood, Stuart & Gambella, Claudio & Trenev, Dimitar & Simonetto, Andrea & Bernal Neira, 
David & Greenberg, Donny. (2021). Formulating and Solving Routing Problems on Quantum 
Computers. IEEE Transactions on Quantum Engineering. PP. 1-1. 10.1109/TQE.2021.3049230. 

48. Nnamchi SN, OD Sanya, K Zaina, V Gabriel. (2020) Development of dynamic thermal input 

models for simulation of photovoltaic generators. International Journal of Ambient Energy. 

41(13) 1454-1466. 

49. Balzano, Laura & Wright, Stephen. (2013). Local Convergence of an Algorithm for Subspace 

Identification from Partial Data. Foundations of Computational Mathematics. 15. 

10.1007/s10208-014-9227-7. 

50. Stephen Ndubuisi Nnamchi, Onyinyechi Adanma Nnamchi, Oluwatosin Dorcas Sanya, Mustafa 

Muhamad Mundu, Vincent Gabriel. (2020) Dynamic analysis of performance of photovoltaic 

generators under moving cloud conditions. Journal of Solar Energy Research. 5(2), 453-468. 

http://lamintang.org/journal/index.php/ijeste/article/view/555
http://lamintang.org/journal/index.php/ijeste/article/view/555
http://lamintang.org/journal/index.php/ijeste/article/view/555
https://link.springer.com/article/10.1007/s43939-023-00060-8
https://link.springer.com/article/10.1007/s43939-023-00060-8
http://lamintang.org/journal/index.php/ijortas/article/view/559
http://lamintang.org/journal/index.php/ijortas/article/view/559
https://www.researchgate.net/profile/Chikadibia-Kalu-Uche/publication/344025918_Development_of_Predictive_Equation_for_Evaporation_in_Crude_Oil_Spill_on_Non_-Navigable_River/links/5f4e5fa692851c250b857dae/Development-of-Predictive-Equation-for-Evaporation-in-Crude-Oil-Spill-on-Non-Navigable-River.pdf
https://www.researchgate.net/profile/Chikadibia-Kalu-Uche/publication/344025918_Development_of_Predictive_Equation_for_Evaporation_in_Crude_Oil_Spill_on_Non_-Navigable_River/links/5f4e5fa692851c250b857dae/Development-of-Predictive-Equation-for-Evaporation-in-Crude-Oil-Spill-on-Non-Navigable-River.pdf
https://www.tandfonline.com/doi/abs/10.1080/01430750.2018.1517676
https://www.tandfonline.com/doi/abs/10.1080/01430750.2018.1517676
https://jser.ut.ac.ir/article_77274_4b09370758b3c2bea4c36274e0c7ee9d.pdf
https://jser.ut.ac.ir/article_77274_4b09370758b3c2bea4c36274e0c7ee9d.pdf


 
 
 
https://rijournals.com/engineering-and-physical-sciences/   

P
ag

e
4

9
 

51. Duysinx, Pierre & Bruyneel, Michaël & Fleury, Claude. (2009). Solution of large scale 

optimization problems with sequential convex programming. 

52. Nnamchi SN, COC Oko, FL Kamen, OD Sanya.( 2018). Mathematical analysis of interconnected 

photovoltaic arrays under different shading conditions. .Cogent Engineering. 5(1) 1507442. 

53. Paschos, Vangelis. (2013). Paradigms of Combinatorial Optimization: Problems and New 

Approaches. 10.1002/9781118600207. 

54. Oluwatosin Dorcas Sanya (2017). Modification of an Organic Rankine Cycle (ORC) for Green 

Energy Management in Data Centres. American Journal of Energy Research. 5(3), 79-84. 

55. Cellini L, Macaluso A, Lombardi M. QAL-BP: an augmented Lagrangian quantum approach for 

bin packing. Sci Rep. 2024 Mar 1;14(1):5142. doi: 10.1038/s41598-023-50540-3. PMID: 

38429296; PMCID: PMC10907365. 

56. Joe Mutebi, Margaret Kareyo, Umezuruike Chinecherem, Akampurira Paul. (2022). 

Identification and Validation of Social Media Socio-Technical Information Security Factors 

concerning Usable-Security Principles. Journal of Computer and Communications. 10(8), 41-63. 

57. Anthon Ejeh Itodo, Theo G Swart. (2023). Capacity Enhancement in D2D 5G Emerging 

Networks: A Survey. Journal of Applied Engineering and Technological Science (JAETS). 4(2), 

1022-1037. 

58. Pardalos, Panos & Prokopyev, Oleg & Busygin, Stanislav. (2006). Continuous Approaches for 

Solving Discrete Optimization Problems. 10.1007/0-387-32942-0_2. 

59. Sophia Kazibwe, Fred Ssemugenyi, Agustine Amboka Asumwa.  (2019).Organizational 

Complexity and Performance of Commercial Banks in Kenya. International Journal of 

Engineering Research and Technology. 7(12), 227-231. 

60. Liu, Dianzi & Liu, Chengyang & Zhang, Chuanwei & Xu, Chao & Du, Ziliang & Wan, Zhiqiang. 

(2018). Efficient hybrid algorithms to solve mixed discrete-continuous optimization problems: A 

comparative study. Engineering Computations. 35. 00-00. 10.1108/EC-03-2017-0103. 

61. Benjamin Aina Peter, Amos Wale Ogunsola, AE Itodo, SA Idowu, MM Mundu.(2019). Reacting 

Flow of Temperature-Dependent Variable Permeability through a Porous Medium in the 

Presence of Arrhenius Reaction. Amer. J. Mathem. Comp. Sci. 4(1), 11-18. 

62. Cordier, Tristan & Barrenechea, Ines & Henry, Nicolas & Lejzerowicz, Franck & Berney, Cédric 

& Morard, Raphaël & Brandt, Angelika & Cambon-Bonavita, Marie-Anne & Guidi, Lionel & 

Fabien, Lombard & Martinez Arbizu, Pedro & Massana, Ramon & Orejas, Covadonga & Poulain, 

Julie & Smith, Craig & Wincker, Patrick & Arnaud-Haond, Sophie & Gooday, Andrew & de 

Vargas, Colomban & Pawlowski, Jan. (2022). Patterns of eukaryotic diversity from the surface to 

the deep-ocean sediment. Science Advances. 8. 10.1126/sciadv.abj9309. 

63. Nabiryo Patience, Itodo Anthony Ejeh. (2022) Design and Implementation of Base Station 

Temperature Monitoring System Using Raspberry Pi. IDOSR Journal of Science and 

Technology. 7(1), 53-66. 

64. Benenti, G. & Casati, Giulio & Montangero, Simone. (2003). Stability of Quantum Computing in 

the Presence of Imperfections. International Journal of Modern Physics B. 17. 3932-3946. 

10.1142/S0217979203021927. 

65. Benjamin Aina Peter, Amos Wale Ogunsola, Anthony Ejeh Itodo, Idowu Sabiki Adebola, Mundu 

Muhamad Mustapha. (2019). A non-isothermal reacting MHD flow over a stretching Sheet 

through a Saturated Porous Medium. American Journal of Mathematical and Computational 

Sciences. 4(1), 1-10. 

66. Yarkoni, Sheir & Raponi, Elena & Bäck, Thomas & Schmitt, Sebastian. (2022). Quantum 

Annealing for Industry Applications: Introduction and Review. Reports on Progress in Physics. 

85. 10.1088/1361-6633/ac8c54. 

67. George Kasamba, Anthony Ejeh. (2022). Enhanced Security Monitoring System for the Pay 

Card Energy Meter. IDOSR Journal of Computer and Applied Sciences. 7(1), 109-118. 

https://www.tandfonline.com/doi/abs/10.1080/23311916.2018.1507442
https://www.tandfonline.com/doi/abs/10.1080/23311916.2018.1507442
http://article.scienergyresearch.com/pdf/ajer-5-3-2.pdf
http://article.scienergyresearch.com/pdf/ajer-5-3-2.pdf
https://www.scirp.org/journal/paperinformation.aspx?paperid=119222
https://www.scirp.org/journal/paperinformation.aspx?paperid=119222
https://yrpipku.com/journal/index.php/jaets/article/view/1394
https://yrpipku.com/journal/index.php/jaets/article/view/1394
https://www.researchgate.net/profile/Benjamin-Peter/publication/337388030_Reacting_Flow_of_Temperature-Dependent_Variable_Permeability_Through_a_Porous_Medium_in_the_Presence_of_Arrhenius_Reaction/links/5dd4eb12299bf11ec8629b12/Reacting-Flow-of-Temperature-Dependent-Variable-Permeability-Through-a-Porous-Medium-in-the-Presence-of-Arrhenius-Reaction.pdf
https://www.researchgate.net/profile/Benjamin-Peter/publication/337388030_Reacting_Flow_of_Temperature-Dependent_Variable_Permeability_Through_a_Porous_Medium_in_the_Presence_of_Arrhenius_Reaction/links/5dd4eb12299bf11ec8629b12/Reacting-Flow-of-Temperature-Dependent-Variable-Permeability-Through-a-Porous-Medium-in-the-Presence-of-Arrhenius-Reaction.pdf
https://www.researchgate.net/profile/Benjamin-Peter/publication/337388030_Reacting_Flow_of_Temperature-Dependent_Variable_Permeability_Through_a_Porous_Medium_in_the_Presence_of_Arrhenius_Reaction/links/5dd4eb12299bf11ec8629b12/Reacting-Flow-of-Temperature-Dependent-Variable-Permeability-Through-a-Porous-Medium-in-the-Presence-of-Arrhenius-Reaction.pdf
https://www.idosr.org/wp-content/uploads/2022/11/IDOSR-JST-7153-66-2022.KIUP32.pdf
https://www.idosr.org/wp-content/uploads/2022/11/IDOSR-JST-7153-66-2022.KIUP32.pdf
https://www.academia.edu/download/77242825/8250060.pdf
https://www.academia.edu/download/77242825/8250060.pdf
https://www.academia.edu/download/94773637/_IDOSR_JCAS_7_1_109_118_2022_KIUP38.pdf
https://www.academia.edu/download/94773637/_IDOSR_JCAS_7_1_109_118_2022_KIUP38.pdf


 
 
 
https://rijournals.com/engineering-and-physical-sciences/   

P
ag

e
5

0
 

68. Ur Rasool, Raihan, Hafiz Farooq Ahmad, Wajid Rafique, Adnan Qayyum, Junaid Qadir, and 

Zahid Anwar. 2023. "Quantum Computing for Healthcare: A Review" Future Internet 15, no. 3: 

94. https://doi.org/10.3390/fi15030094 

69. Domino, K., Koniorczyk, M., Krawiec, K., Jałowiecki, K., Deffner, S., & Gardas, B. (2023). 

Quantum Annealing in the NISQ Era: Railway Conflict Management. ncbi.nlm.nih.gov 

70. Ricciardi Celsi, Michela, and Lorenzo Ricciardi Celsi. 2024. "Quantum Computing as a Game 

Changer on the Path towards a Net-Zero Economy: A Review of the Main Challenges in the 

Energy Domain" Energies 17, no. 5: 1039. https://doi.org/10.3390/en17051039 

71. Orus, R., Mugel, S., & Lizaso, E. (2018). Quantum computing for finance: overview and 

prospects. [PDF] 

72. Mcgeoch, Catherine. (2014). Adiabatic Quantum Computation and Quantum Annealing: Theory 

and Practice. Synthesis Lectures on Quantum Computing. 5. 1-93. 

10.2200/S00585ED1V01Y201407QMC008. 

73. Chen, B., Wu, H., Yuan, H., Wu, L., & Li, X. (2023). Quasi-binary encoding based quantum 

alternating operator ansatz. [PDF] 

74. Blekos, Kostas & Brand, Dean & Ceschini, Andrea & Chou, Chiao-Hui & Li, Rui-Hao & Pandya, 

Komal & Summer, Alessandro. (2024). A review on Quantum Approximate Optimization 

Algorithm and its variants. Physics Reports. 1068. 1-66. 10.1016/j.physrep.2024.03.002. 

75. Huang, Z., Li, Q., Zhao, J., & Song, M. (2022). Variational Quantum Algorithm Applied to 

Collision Avoidance of Unmanned Aerial Vehicles. ncbi.nlm.nih.gov 

76. H. Bombin and M.A. Martin-Delgado, 2006, Topological quantum distillation, Physical Review 

Letters 97:180501, arXiv:quant-ph/0605138. 

77. National Academies of Sciences, Engineering, and Medicine. 2019. Quantum Computing: 

Progress and Prospects. Washington, DC: The National Academies Press. 

https://doi.org/10.17226/25196. 

78. Weidenfeller, Johannes & Valor, Lucia & Gacon, Julien & Tornow, Caroline & Bello, Luciano & 

Woerner, Stefan & Egger, Daniel. (2022). Scaling of the quantum approximate optimization 

algorithm on superconducting qubit based hardware. 

79. Pakhomchik, I. A., Yudin, S., R. Perelshtein, M., Alekseyenko, A., & Yarkoni, S. (2022). Solving 

workflow scheduling problems with QUBO modeling. [PDF] 

80. Dalyac, C., Henriet, L., Jeandel, E., Lechner, W., Perdrix, S., Porcheron, M., & Veshchezerova, 

M. (2021). Qualifying quantum approaches for hard industrial optimization problems. A case 

study in the field of smart-charging of electric vehicles. ncbi.nlm.nih.gov 

81. Vert D, Sirdey R, Louise S. Revisiting Old Combinatorial Beasts in the Quantum Age: Quantum 

Annealing Versus Maximal Matching. Computational Science – ICCS 2020. 2020 May 

25;12142:473–87. doi: 10.1007/978-3-030-50433-5_37. PMCID: PMC7304699. 

82. Villalba-Diez, Javier & González-Marcos, Ana & Ordieres-Meré, Joaquín. (2021). Improvement 
of Quantum Approximate Optimization Algorithm for Max–Cut Problems. Sensors. 22. 10. 
10.3390/s22010244. 

83. J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, Barren Plateaus in 
Quantum Neural Network Training Landscapes, Nat. Commun. 9, 4812 (2018). 

84. S. Muthukrishnan, T. Albash, and D. A. Lidar, Tunneling and Speedup in Quantum Optimization for 
Permutation-Symmetric Problems, Phys. Rev. X 6, 031010 (2016). 

85. Z.-C. Yang, A. Rahmani, A. Shabani, H. Neven, and C. Chamon, Optimizing Variational Quantum 
Algorithms Using Pontryagin’s Minimum Principle, Phys. Rev. X 7, 021027 (2017). 

86. W. W. Ho and T. H. Hsieh, Efficient Unitary Preparation of Non-trivial Quantum States, SciPost 
Phys. 6, 029 (2019). 

87. Z. Jiang, E. G. Rieffel, and Z. Wang, Near-Optimal Quantum Circuit for Grover’s Unstructured 
Search Using a Transverse Field, Phys. Rev. A 95, 062317 (2017). 
 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955039/
https://arxiv.org/pdf/1807.03890
https://arxiv.org/pdf/2304.06915
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689747/
https://doi.org/10.17226/25196
https://arxiv.org/pdf/2205.04844
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550161/
http://dx.doi.org/10.1038/s41467-018-07090-4
http://link.aps.org/doi/10.1103/PhysRevX.6.031010
http://link.aps.org/doi/10.1103/PhysRevX.7.021027
http://dx.doi.org/10.21468/SciPostPhys.6.3.029
http://dx.doi.org/10.21468/SciPostPhys.6.3.029
http://link.aps.org/doi/10.1103/PhysRevA.95.062317


 
 
 
https://rijournals.com/engineering-and-physical-sciences/   

P
ag

e
5

1
 

 

 

 

CITE AS: Kawino Charles K. (2024). Quantum Computing and Optimization: A Comparative 
Analysis of Classical and Quantum Algorithms. RESEARCH INVENTION JOURNAL OF 
ENGINEERING AND PHYSICAL SCIENCES 3(1):42-51. 

 


